993 resultados para ANTIMICROBIAL PHOTODYNAMIC THERAPY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-aggregation of pheophytin, a possible photosensitizer for Photodynamic Therapy, is solved by formulation in polymeric surfactant as P-123. The photosensitizer incorporation was found to be time dependent, exhibiting two steps: a partition at the micellar interface followed by an incorporation into the micelle core. The photodynamic efficiency of the formulation was tested by the bioassays against Artemia salina. In order to evaluate how the experimental parameters: pheophytin concentration, P-123 percentage and illumination time influenced the death of artemia, the factorial design 2³ was chosen. The illumination time was found to be the main factor contributing to the mortality of artemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the spectroscopic properties of 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (TMPP) in solvents of different polarities and water/ethanol mixtures were studied by electronic absorption spectroscopy and resonance light scattering associated with statistical analysis. The molar absorption coefficient and emission maximum of TMPP were dependent on solvent polarity. In the water/ethanol mixture, TMPP remained monomeric up to 25% of water, when it reaches its critical aggregation percentage. Oblique head-to-tail aggregate was found at intermediate water content (35 - 55%), while formation of a J-type aggregate was observed at higher water content (> 60%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physicochemical properties (solubilization, structural organization and stability) of meso-tetrakis(p-methoxyphenyl)porphyrin (TMPP), a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photodynamic therapy consists of the uptake of a photosensitizing dye, often a porphyrin, by tumor tissue and subsequent irradiation of the tumor with visible light of an appropriate wavelength matched to the absorption spectrum of the photosensitizing dye. This class of molecules produces reactive oxygen species when activated by light, resulting in a direct or indirect cytotoxic effect on the target cells. Photodynamic therapy has been used in the treatment of cancer but the technology has a potential for the treatment of several disease conditions mainly because of its selectivity. However, it is not clear why the porphyrins are retained preferentially by abnormal tissue. This paper describes a study of the effect of the association of porphyrin and visible light on two mouse fibroblast cell lines: A31, normal cells and B61, an EJ-ras transformed variant of A31. Two water-soluble porphyrins were used, a positively charged one, tetra(N-methyl-4-pyridyl)porphyrin chloride, and a negatively charged one, tetra(4-sulfonatophenyl)porphyrin-Na salt (TPPS4) in order to assess the effect on cell survival. The results suggest that the B61 cell line is more sensitive to incubation with the anionic porphyrin (TPPS4) followed by light irradiation and that the anionic porphyrin is more efficient in killing the cells than the cationic porphyrin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photogeneration of nitric oxide (NO) using laser flash photolysis was investigated for S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NacySNO) at pH 6.4 (PBS/HCl) and 7.4 (PBS). Irradiation of S-nitrosothiol with light (lambda = 355 nm followed by absorption spectroscopy) resulted in the homolytic decomposition of NacySNO and GSNO to generate radicals (GS· and NacyS·) and NO. The release of NO from donor compounds measured with an ISO-Nometer apparatus was larger at pH 7.4 than pH 6.4. NacySNO was also incorporated into dipalmitoyl-phosphatidylcholine liposomes in the presence and absence of zinc phthalocyanine (ZnPC), a well-known photosensitizer useful for photodynamic therapy. Liposomes are usually used as carriers for hydrophobic compounds such as ZnPC. Inclusion of ZnPC resulted in a decrease in NO liberation in liposomal medium. However, there was a synergistic action of both photosensitizers and S-nitrosothiols resulting in the formation of other reactive species such as peroxynitrite, which is a potent oxidizing agent. These data show that NO release depends on pH and the medium, as well as on the laser energy applied to the system. Changes in the absorption spectrum were monitored as a function of light exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCCIÓN. La mediastinitis posterior a cirugía de revascularización miocárdica es una infección infrecuente, pero potencialmente fatal. En la Fundación Cardioinfantil se ha observado una tendencia al incremento de la misma en los últimos años, obligando a un cambio en las medidas de profilaxis antimicrobiana, pasando de cefalosporinas a vancomicina – gentamicina, sin embargo no se conoce aún el impacto de estas medidas. OBJETIVO: Determinar si el cambio de la profilaxis antibiótica en pacientes sometidos a revascularización miocárdica influye en una disminución de la incidencia de mediastinitis durante los años 2012 – 2013. METODOLOGÍA: Estudio de cohortes retrospectivo, evaluando la incidencia de mediastinitis post revascularización miocárdica, en pacientes expuestos a 2 diferentes tipos de profilaxis antimicrobiana (cefalosporinas vs vancomicina-gentamicina). Se describieron los patrones de susceptibilidad y resistencia de los patógenos encontrados en mediastinitis y la mortalidad de esta patología. RESULTADOS: Los patógenos más frecuentemente aislados en la mediastinitis fueron Staphylococcus aureus y Klebsiella pneumoniae, en la mayoría monomicrobiano. Se encontraron patógenos con perfiles de resistencia como betalactamasas de espectro extendido en Gram negativos y resistencia a la meticilina en cocos Gram positivos. El RR de mediastinitis del grupo expuesto a vancomicina-gentamicina respecto al grupo de cefalosporinas fue de 0,9 con IC 95% 0,28 – 3,28. CONCLUSIÓN: la epidemiologia microbiana de la mediastinitis no difiere de la reportada en otras series. La profilaxis antimicrobiana con vancomicina - gentamicina en pacientes sometidos a revascularización miocárdica, no redujo la incidencia de mediastinitis. Se propone regresar a la terapia de profilaxis con cefalosporinas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudio Casos y Controles 1:1 que busca la relación entre la DMRE e HTA. Se estudian otras variables. Muestra de 400 pacientes, edad promedio 66,9 años +/-9,2 años. HTA y DM OR 2,315 y OR 4,626. Oclusión vascular OR 13,549 (IC 95% 3,023-60,724).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated a possible correlation between the photostability and photodynamic efficacy for different photosensitizers; hematoporphyrin derivatives and chlorines. To perform such analysis, we combined the depth of necrosis (d (nec)) measurement, expressed by the light threshold dose and a photodegradation parameter, measured from investigation of photosensitizer degradation in solution. The d (nec) analysis allows us to determine the light threshold dose and compare its value with the existent results in the literature. The use of simple models to understand basic features of Photodynamic Therapy (PDT) may contribute to the solid establishment of dosimetry in PDT, enhancing its use in the clinical management of cancers and others lesions. Using hematoporphyrin derivatives and chlorines photosensitizers we investigated their properties related to the photodegradation in solution and the light threshold dose (D (th)) in rat livers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PhotogemA (R) is a hematoporphyrin derivative that has been used as a photosensitizer in experimental and clinical Photodynamic Therapy (PDT) in Brazil. Photosensitizers are degraded under illumination. This process, usually called photobleaching, can be monitored by decreasing in fluorescence intensities and includes the following photoprocesses: photodegradation, phototransformation, and photorelocalization. Photobleaching of hematoporphyrin-type sensitizers during illumination in aqueous solution is related not only to photodegradation but is also followed by the formation of photoproducts with a new fluorescence band at around 640-650 nm and with increased light absorption in the red spectral region at 640 nm. In this study, the influence of pH on the phototransformation process was investigated. PhotogemA (R) solutions, 40 mu g/ml, were irradiated at 514 nm with intensity of 100 mW/cm(2) for 20 min with different pH environments. The controls were performed with the samples in the absence of light. The PhotogemA (R) photodegradation is dependent on the pH. The behavior of photodegradation and photoproducts formation (monitored at 640 nm) is distinct and depends on the photosensitizer concentration. The processes of degradation and photoproducts formation were monitored with Photogemin the concentration of 40 mu g/mL since that demonstrated the best visualization of both processes. While below pH 5 the photodegradation occurred, there was no detectable presence of photoproducts. The increase of pH led to increase of photoproducts formation rate with photodegradation reaching the highest value at pH 10. The increase of photoproducts formation and instability of PhotogemA (R) from pH 6 to pH 10 are in agreement with the desired properties of an ideal photosensitizer since there are significant differences in pH between normal (7.0 < pH < 8.6) and tumor (5.8 < pH < 7.9) tissues. It is important to know the effect of pH in the process of phototransformation (degradation and photoproduct formation) of the molecule since low pH values promotes increase in the proportion of aggregates species in solution and high pH values promotes increase in the proportion of monomeric species. There must be an ideal pH interval which favors the phototransformation process that is correlated with the singlet oxygen formation responsible by the photodynamic effect. These differences in pH between normal and tumor cells can explain the presence of photosensitizers in target tumor cells, making PDT a selective therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photoactivation of a photosensitizer is the initial step in photodynamic therapy (PDT) where photochemical reactions result in the production of reactive oxygen species and eventually cell death. In addition to oxidizing biomolecules, some of these photochemical reactions lead to photosensitizer degradation at a rate dependent on the oxygen concentration among other factors. We investigated photodegradation of Photogem A (R) (28 mu M), a hematoporphyrin derivative, at different oxygen concentrations (9.4 to 625.0 mu M) in aqueous solution. The degradation was monitored by fluorescence spectroscopy. The degradation rate (M/s) increases as the oxygen concentration increases when the molar ratio of oxygen to PhotogemA (R) is greater than 1. At lower oxygen concentrations (< 25 mu M) an inversion of this behavior was observed. The data do not fit a simple kinetic model of first-order dependence on oxygen concentration. This inversion of the degradation rate at low oxygen concentration has not previously been demonstrated and highlights the relationship between photosensitizer and oxygen concentrations in determining the photobleaching mechanism(s). The findings demonstrate that current models for photobleaching are insufficient to explain completely the effects at low oxygen concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the effects of photodynamic therapy (PDT) outcome when combining three laser systems that produce light in three different wavelengths (600, 630, and 660 nm). Cooperative as well as independent effects can be observed. We compared the results of the combined wavelengths of light with the effect of single laser for the excitation of the photosensitizer. In the current experiment, the used photosensitizer was Photogem (R) (1.5 mg/kg). Combining two wavelengths for PDT, their cumulative dose and different penetrability may change the overall effect of the fluence of light, which can be effective for increasing the depth of necrosis. This evaluation was performed by comparing the depth and specific aspect of necrosis obtained by using single and dual wavelengths for irradiation of healthy liver of male Wistar rats. We used 15 animals and divided them in five groups of three animals. First, Photogem (R) was administered; follow by measurement of the fluorescence spectrum of the liver before PDT to confirm the level of accumulation of photosensitizer in the tissue. After that, an area of 1 cm(2) of the liver was illuminated using different laser combinations. Qualitative analysis of the necrosis was carried out through histological and morphological study. [GRAPHICS] (a) - microscopic images of rat liver cells, (b) - superficial necrosis caused by PDT using dual-wavelength illumination, (c) - neutrophilic infiltration around the vessel inside the necrosis, and (d) - neutrophilic infiltration around the vessel between necrosis and live tissue (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine (R), Radachlorin (R), and Foscan (R)). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin (R) < Photoditazine (R) < Foscan (R). This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue.