970 resultados para A. Ceramics
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
The possibility of mechanochemical synthesis of the lead magnesium niobate (PMN) powders of the composition Pb(Mg(1/3)Nb(2/3))O(3) in iron vials was investigated. According to X-ray and energy-dispersive spectroscopy (EDS) analysis of the obtained powder mixtures, milling in iron vials resulted in incorporation of Fe and formation of PFN of composition Pb(Fe(1/2)Nb(1/2))O(3) simultaneously with formation of PMN. Relative amounts of PMN and PFN were determined based on values of Curie temperature and lattice constant of perovskite phase. Although only 1 wt pct of Fe was incorporated, a stoichiometry of the system was significantly changed, resulting in formation of pyrochlore phase and excess MgO. Single-phase perovskite was obtained when the excess of PbO and Nb(2)O(5) was added during mechanochemical synthesis. Because the dielectric properties were worse than expected, the alternative ways for improvement of dielectric properties were tried and discussed.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tin oxide has wakened up great scientific and technological interest for its potential use in varistors production and as gas sensor. In order to improve the microstructural and electrical properties in SnO2 varistor ceramics, the influence of differents dopants used, like TiO2 and Al2O3, is under research. The effect of TiO2 and Al2O3 on the properties of Sn-Co-Nb varistor systems obtained by the Pechini method has been investigated in this work. Characterization of synthesized raw material was performed by X-Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM). The microstructural and electrical characterization of sintered samples show that the TiO2 favors the grain growth and the Al2O3 contributes to the decrease it, effect that is manifested in the Sn-Co-Nb varistor systems. Breakdown field increase up to 6300V/cm with increasing Al2O3 content and non-linear coefficients with alpha=22 were obtained.
Resumo:
In this article a new technique for thermal neutron detection using pyroelectric ceramics is described. The detector system is basically constituted of a PZT (lead zirconate titanate) ceramic attached to an uranium disk. The energy released in the uranium fission gives rise to an electrical signal in the detector which is amplified by a lock-in system. The neutron beam impinging on the uranium disk was modulated with a cadmium chopper. Thermal neutron fluxes within the interval of 103 to 106 n/cm2 s have been detected using a U3O8 pellet with 20% enrichment in 235U. © 1992.
Resumo:
Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.
Resumo:
Results are reported of the behaviour of the plane tangential grinding process using diamond grinding wheels. Grinding performance is analysed in terms of the wear behaviour of the wheel in the grinding of ceramic. Discussion of the results concentrates on the wear mechanism of the diamond wheel and the process of material removal.
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics grounded by a plane tangential grinding process with diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The discussion about the results emphasized the wear mechanism of the grinding wheel cutting surface and the cutting phenomenology of the grinding process. The grounded surface was evaluated using Scanning Electron Microscopy (SEM). © 1999 Society of Automotive Engineers, Inc.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the hmax can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.
Resumo:
Non-linear electrical properties of SnO2-based ceramics were investigated as a function of powder agglomeration condition and as a function of dopant addition. All doped powders presented a single phase, cassiterite, as evidenced by X-ray diffraction analysis. The effect of milling was quite evident, with non-milled powder showing higher agglomerated particle size than milled powder. Cr addition seemed to increase the non-linear coefficient. Cu and Mn rendered dense ceramics, but α values for systems with Mn were higher than for systems with Cu.