997 resultados para 320.1
Resumo:
Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.
Resumo:
At Site 697 a 320 m thick Pleistocene and Pliocene section was recovered, consisting of hemipelagic terrigenous mud with varying amounts of diatoms, thin altered ash layers, and ice-rafted debris (IRD). Sedimentation rates range from 41 m/m.y. (upper Pleistocene) to 150 m/m.y. (lower Pliocene). Diatom percentage and sediment grain-size have been measured for the whole section with approximately one sample per 5,000 yr. IRD is most abundant in the lower Pliocene (sediments older than 4.5 Ma) following the first major West Antarctic glaciation. A decrease in IRD to near-zero above 3.2 Ma may record a transition from valley glaciers to a grounded ice-sheet on West Antarctica. Bottom current flow, recorded in sediments as the proportion of silt, was at a maximum around 3.0-3.3 Ma then gradually decreased until 0.5 Ma. In the upper Pleistocene, maxima in diatom percentage are assumed to occur during interglacials, implying reduced sea-ice cover; maxima in silt percentage correspond to diatom maxima, implying stronger bottom water flow during interglacials.
Resumo:
Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.
Resumo:
Heme oxygenase-1 (HO-1) is an enzyme induced by hypoxia and reperfusion injury, and is associated with organ dysfunction in critically ill patients. Patients resuscitated from out-of-hospital cardiac arrest (OHCA) are subjected to hypoxemia, brain injury, and organ dysfunction. Accordingly, we studied HO-1 among these patients. A total of 143 OHCA patients resuscitated from a shockable initial rhythm and admitted to an ICU were included, with plasma HO-1 measured at ICU admission and at 24 h. We analyzed the associations between plasma HO-1 and time to return of spontaneous circulation (ROSC), 90-day mortality, and 12-month Cerebral Performance Category (CPC). HO-1 plasma concentrations were higher after OHCA compared with controls. HO-1 concentrations at admission and on day 1 associated with ROSC (P = 0.002 to P = 0.003). Admission and day 1 HO-1 plasma concentrations were higher in 90-day non-survivors than in survivors (P = 0.017, 0.026). In addition, poor neurological outcome (CPC 3-5) was associated with higher HO-1 plasma levels at admission (P = 0.024). Admission plasma HO-1 levels had an AUC of 0.623 to predict 90-day mortality and an AUC of 0.611 to predict CPC 3 to 5. In conclusion, we found that higher HO-1 plasma levels are associated with longer ROSC and poor long-term outcome.
Resumo:
Engraved frontispiece by Bernard Picart; portrait of the author engraved by G. Valck after Godfrey Kneller; other engravings unsigned.
Resumo:
"Due: October 1, as shown below."
Resumo:
Stable carbon and oxygen isotopes (d13C and d18O) of foraminiferal tests are amongst the most important tools in paleoceanography but the extent to which recrystallization can alter the isotopic composition of the tests is not well known. Here, we compare three middle Miocene (16-13 Ma) benthic foraminiferal stable isotope records from eastern equatorial Pacific sites with different diagenetic histories to investigate the effect of recrystallization. To test an extreme case, we analyzed stable isotope compositions of benthic foraminifera from Integrated Ocean Drilling Program Site U1336, for which the geochemistry of bulk carbonates and associated pore waters indicate continued diagenetic alteration in sediments > 14.7 Ma. Despite this diagenetic overprinting, the amplitudes and absolute values of the analyzed U1336 stable isotopes agree well with high resolution records from better preserved Sites U1337 and U1338 nearby. Our results suggest that although benthic foraminiferal tests of all three sites show some degree of textural changes due to recrystallization, they have retained their original stable isotope signatures. The good agreement of the benthic foraminiferal stable isotope records demonstrates that recrystallization occurred extremely rapidly (<100 kyr) after deposition. This is confirmed by the preservation of orbital cyclicities in U1336 stable isotope data and d18O values being different to inorganic calcite that would precipitate from U1336 pore waters during late recrystallization. The close similarity of the benthic foraminiferal stable isotope records between the sites allows the well resolved paleo-magnetic results of Site U1336 to be transferred to Sites U1337 and U1338 improving the global Geological Timescale.
Resumo:
Hydroxylated glycerol dialkyl glycerol tetraethers (hydroxy-GDGTs) were detected in marine sediments of diverse depositional regimes and ages. Mass spectrometric evidence, complemented by information gleaned from two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR) spectroscopy on minute quantities of target analyte isolated from marine sediment, allowed us to identify one major compound as a monohydroxy-GDGT with acyclic biphytanyl moieties (OH-GDGT-0). NMR spectroscopic and mass spectrometric data indicate the presence of a tertiary hydroxyl group suggesting the compounds are the tetraether analogues of the widespread hydroxylated archaeol derivatives that have received great attention in geochemical studies of the last two decades. Three other related compounds were assigned as acyclic dihydroxy-GDGT (2OH-GDGT-0) and monohydroxy-GDGT with one (OH-GDGT-1) and two cyclopentane rings (OH-GDGT-2). Based on the identification of hydroxy-GDGT core lipids, a group of previously reported unknown intact polar lipids (IPLs), including the ubiquitously distributed H341-GDGT (Lipp J. S. and Hinrichs K. -U. (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816-6833), and its analogues were tentatively identified as glycosidic hydroxy-GDGTs. In addition to marine sediments, we also detected hydroxy-GDGTs in a culture of Methanothermococcus thermolithotrophicus. Given the previous finding of the putative polar precursor H341-GDGT in the planktonic marine crenarchaeon Nitrosopumilus maritimus, these compounds are synthesized by representatives of both cren- and euryarchaeota. The ubiquitous distribution and apparent substantial abundance of hydroxy-GDGT core lipids in marine sediments (up to 8% of total isoprenoid core GDGTs) point to their potential as proxies.
Resumo:
The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial-interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ~320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe/Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial-interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial-interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.
Resumo:
Cold-water corals are widely distributed along the Atlantic continental margin with varying growth patterns in relation to their specific environment. Here, we investigate the long-term development of cold-water corals that once thrived on a low-latitude (17°40'N) cold-water coral mound in the Banda Mound Province off Mauritania during the last glacial-interglacial cycle. U/Th dates obtained from 20 specimens of the cold-water coral Lophelia pertusa, revealed three distinct periods of coral growth during the last glacial at 65 to 57 kyr BP, 45 to 32 kyr BP and 14 kyr BP, thus comprising the cool periods of Marine Isotopic Stages (MIS) 2-4. These coral growth periods occur during periods of increased productivity in the region, emphasizing that productivity seems to be the major steering factor for coral growth off Mauritania, which is one of the major upwelling regions in the world. This pattern differs from the well studied coral mounds off Ireland, where the current regime predominantly influences the prosperity of the cold-water corals. Moreover, coral growth off Ireland takes place during rather warm interglacial and interstadial periods, whereas off Mauritania coral growth is restricted to glacial and stadial periods. However, the on-mound sedimentation patterns off Mauritania largely resemble the observations reported from the Irish mounds. The bulk of the preserved sediments derives from periods of coral growth, whereas during periods without corals hardly any net sedimentation or mound growth took place.
Resumo:
C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 27 shipboard-sealed, deep-frozen core samples of DSDP Hole 603B off the east coast of North America were determined by a gas-stripping/thermovaporization method. Total yields representing the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediments vary from 22 to 2400 ng/g of dryweight sediment. Highest yields are measured in the two black shale samples of Core 603B-34 (hydrogen index of 360 and 320 mg/g Corg, respectively). In organic-carbon-normalized units these samples have hydrocarbon contents of 12,700 and 21,500 ng/g Corg, respectively, indicating the immaturity of their kerogens. Unusually high organic-carbonnormalized yields are associated with samples that are extremely lean in organic carbon. It is most likely that they are enriched by small amounts of migrated light hydrocarbons. This applies even to those samples with high organic-carbon contents (1.3-2.2%) of Sections 603B-28-4, 603B-29-1, 603B-49-2, and 603B-49-3, because they have an extremely low hydrocarbon potential (hydrogen index between 40 and 60 mg/g Corg). Nearly all samples were found to be contaminated by varying amounts of acetone that is used routinely in large quantities on board ship during core-cutting procedures. Therefore, 48 samples from the original set of 75 collected had to be excluded from the present study.
Resumo:
The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spaning the past 2.8 Ma. The core reveals numerous "super interglacials" during the Quaternary, with maximum summer temperatures and annual precipitation during marine benthic isotope stages (MIS) 11c and 31 ~4-5 °C and ~300 mm higher than those of MIS 1 and 5e. Climate simulations show these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.