473 resultados para maleic anhydride


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallization, miscibility and structure of polyimide PBPI-E/PTI-E blends were studied by DSC, DMA, NMR and fluorescence techniques, where PBPI-E is a biphenyldianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that PBPI-E/PTI-E blends are miscible at a molecular level for all the compositions studied. However, the glass transition temperature of the blends is well below the value predicted by the Fox equation, and the blends are not stable at high temperature, i.e. phase separation will occur when the blends are annealed about T-g. Moreover, the melting point T-m, differential enthalpy Delta H and spin-lattice relaxation time T-l(c) of the blends increase with the annealing time. (C) 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New alicyclic Polyimides (PIs) were prepared from asymmetric alicyclic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexane-1,2-dicarboxylic anhydride (DOCDA) and the corresponding aromatic diamines such as p-phenylenediamine, m-phenylenediamine and oxydianiline etc. by the polycondensation in N-methyl-2-pyrrolidone (NMP) followed by chemical imidization as well as one step polyimidization in m-cresol in the presence of isoquinoline as a catalyst. The resulting PIs with glass transition temperatures ranging from 220 to 328 degrees C had the inherent viscosities within the range of 0.25 similar to 1.42 dL/g. These polymers were readily soluble in aprotic polar solvents such as NMP, dimethylacetamide (DMAc), dimethylesulfoxide (DMSO), etc. Furthermore, some of the polymers showed good solubility properties to common organic solvents like tetrahydrofurane and chlorform. Also, all of these polyimide films were tough, almost colourless, and transparent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reverse phase high performance liquid chromatography (HPLC) was used to separate and quantify aromatic diester-diacids isomers which arise from the opening selectivity of anhydride rings towards methanol. C-13 NMR spectroscopy was a supplementary tool to characterize the isomer structure. It was found that a meta-position attack is slightly preferred in pyromellitic dianhydride (PMDA), while the preferred position of an attack in bridged dianhydrides is determined by the chemical nature (donors or accepters) of the bridged group. The stronger its electron-withdrawing abilities, the lower the probability of a meta-position attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and miscibility of polyimide PBPI-E/PTI-E blends were studied by wide- and small-angle X-ray scattering and dynamic mechanical analysis, where PBPI-E is a biphenyl-dianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that there exists a paracrystalline structure in the blends with high content of PBPI-E, but this does not affect the miscibility of the blends. The blends are miscible over the entire composition range, since only one T(g) was observed for each blend. Meanwhile, the segregation of PTI-E during crystallization of PBPI-E in the blends is interlamellar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed series of simulation chamber experiments has been performed on the atmospheric degradation pathways of the primary air pollutant naphthalene and two of its photooxidation products, phthaldialdehyde and 1-nitronaphthalene. The measured yields of secondary organic aerosol (SOA) arising from the photooxidation of naphthalene varied from 6-20%, depending on the concentrations of naphthalene and nitrogen oxides as well as relative humidity. A range of carbonyls, nitro-compounds, phenols and carboxylic acids were identified among the gas- and particle-phase products. On-line analysis of the chemical composition of naphthalene SOA was performed using aerosol time-of-flight mass spectrometry (ATOFMS) for the first time. The results indicate that enhanced formation of carboxylic acids may contribute to the observed increase in SOA yields at higher relative humidity. The photolysis of phthaldialdehyde and 1-nitronaphthalene was investigated using natural light at the European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficients were measured directly and used to confirm that photolysis is the major atmospheric loss process for these compounds. For phthaldialdehyde, the main gas-phase products were phthalide and phthalic anhydride. SOA yields in the range 2-11% were observed, with phthalic acid and dihydroxyphthalic acid identified among the particle phase products. The photolysis of 1-nitronaphthalene yielded nitric oxide and a naphthoxy radical which reacted to form several products. SOA yields in the range 57-71% were observed, with 1,4-naphthoquinone, 1-naphthol and 1,4-naphthalenediol identified in the particle phase. On-line analysis of the SOA generated in an indoor chamber using ATOFMS provided evidence for the formation of high-molecular-weight products. Further investigations revealed that these products are oxygenated polycyclic compounds most likely produced from the dimerization of naphthoxy radicals. These results of this work indicate that naphthalene is a potentially large source of SOA in urban areas and should be included in atmospheric models. The kinetic and mechanistic information could be combined with existing literature data to produce an overall degradation mechanism for naphthalene suitable for inclusion in photochemical models that are used to predict the effect of emissions on air quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tandem allylic oxidation/oxa-Michael reaction promoted by the gem-disubstituent effect and the 2-methyl-6-nitrobenzoic anhydride (MNBA)-mediated dimerization were explored for the efficient and facile synthesis of cyanolide A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies [Zhou, D. Chen, L.-M. Hernandez, L. Shears, S.B. and Galán, J.E. (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host-cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248-259] with engineered Salmonella mutants showed that deletion of SopE attenuated the pathogen's ability to deplete host-cell InsP5 and remodel the cytoskeleton. We pursued these observations: In SopE-transfected host-cells, membrane ruffling was induced, but SopE did not dephosphorylate InsP5, nor did it recruit PTEN (a cytosolic InsP5 phosphatase) for this task. However, PTEN strengthened SopE-mediated membrane ruffling. We conclude SopE promotes host-cell InsP5 hydrolysis only with the assistance of other Salmonella proteins. Our demonstration that Salmonella-mediated cytoskeletal modifications are independent of inositolphosphates will focus future studies on elucidating alternate pathogenic consequences of InsP5 metabolism, including ion channel conductance and apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids have been shown to offer hitherto unseen control as both a storage solvent for PCl3 and POCl3 and reaction media for fluorination and mixed anhydride formation under benign conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loading of the photosensitisers meso-Tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP), methylene blue (MB) and IMP with sodium dodecyl sulphate (SDS) into and release from hydrogels composed of the polyelectrolyte poly(methyl vinyl ether-co-maleic acid) crosslinked in a 2:1 ratio with PEG 10,000 were investigated as a potential rapid photodynamic antimicrobial chemotherapy (PACT) treatment for infected wounds using iontophoresis as a novel delivery method. Photosensitiser uptake was very high; (% TMP uptake; 95.53-96.72%) (% MB uptake; 90.58-93.26%) and was PMVE/MA concentration independent, whilst SDS severely limited TMP uptake (5.93-8.75%). Hydrogel hardness, compressibility and adhesiveness on the dermal surface of neonate porcine skin increased with PMVE/MA concentration and were significantly increased with SDS.

The ionic conductivities of the hydrogels increased with PMVE/MA concentration. Drug release was PMVE/MA concentration independent, except for drug release under iontophoteric conditions for MB and TMP (without SDS). In just 15 min, the mean% drug concentrations released of TMP, TMP (with SDS) and MB using an electric current ranged from 22.30 to 64.72 mu gml(-1), 6.37-4.59 mu gml(-1) and 11.73-36.57 mu gml(-1) respectively. These concentrations were in excess of those required to induce complete kill of clinical strains of meticillin-resistant Staphylococcus aureus and Burkholderia cepacia. Thus these results support our contention that the iontophoteric delivery of IMP and MB using anti-adherent, electrically-responsive, PEG-crosslinked PMVE/MA hydrogels are a potential option in the rapid PACT treatment of infected wounds. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plethora of studies have described the in vitro assessment of dissolving microneedle (MN) arrays for enhanced transdermal drug delivery, utilising a wide variety of model membranes as a representation of the skin barrier. However, to date, no discussion has taken place with regard to the choice of model skin membrane and the impact this may have on the evaluation of MN performance. In this study, we have, for the first time, critically assessed the most common types of in vitro skin permeation models - a synthetic hydrophobic membrane (Silescol(®) of 75 µm) and neonatal porcine skin of definable thickness (300-350 µm and 700-750 µm) - for evaluating the performance of drug loaded dissolving poly (methyl vinyl ether co maleic acid) (PMVE/MA) MN arrays. It was found that the choice of in vitro skin model had a significant effect on the permeation of a wide range of small hydrophilic molecules released from dissolving MNs. For example, when Silescol(®) was used as the model membrane, the cumulative percentage permeation of methylene blue 24h after the application of dissolvable MNs was found to be only approximately 3.7% of the total methylene blue loaded into the MN device. In comparison, when dermatomed and full thickness neonatal porcine skin were used as a skin model, approximately 67.4% and 47.5% of methylene blue loaded into the MN device was delivered across the skin 24h after the application of MN arrays, respectively. The application of methylene blue loaded MN arrays in a rat model in vivo revealed that the extent of MN-mediated percutaneous delivery achieved was most similar to that predicted from the in vitro investigations employing dermatomed neonatal porcine skin (300-350 µm) as the model skin membrane. On the basis of these results, a wider discussion within the MN community will be necessary to standardise the experimental protocols used for the evaluation and comparison of MN devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.