974 resultados para harmonic approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a generalization of the relativistic eikonal amplitude originally developed to describe elastic scattering between structureless particles. The coherent and incoherent proton-nucleus scattering processes are analysed and closed-form expressions for elastic and inelastic amplitudes are derived. In particular, for the incoherent case, an energy-conserving version of Glauber's theory is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results for low- and medium-energy elastic and capture cross sections for positronium-atom-alkali-ion scattering using the coupled static close-coupling approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charged oscillator, defined by the Hamiltonian H = -d2/dr2+ r2 + lambda/r in the domain [0, infinity], is a particular case of the family of spiked oscillators, which does not behave as a supersingular Hamiltonian. This problem is analysed around the three regions lambda --> infinity, lambda --> 0 and lambda --> -infinity by using Rayleigh-Ritz large-order perturbative expansions. A path is found to connect the large lambda regions with the small lambda region by means of the renormalization of the series expansions in lambda. Finally, the Riccati-Pade method is used to construct an implicit expansion around lambda --> 0 which extends to very large values of Absolute value of lambda.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unitary pole approximation is used to construct a separable representation for a potential U which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The exact bound-state wave function is employed. U is chosen as the potential which binds the proton in the 1d5/2 single-particle orbit in F-17. Using the separable representation derived for U, and assuming a separable Yamaguchi potential to describe the 1d5/2 neutron in O-17, the energies and wave functions of the ground state (1+) and the lowest 0+ state of F-18 are calculated in the Gore-plus-two-nucleons model solving the Faddeev equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positronium scattering off a hydrogen target has been studied employing a three-state positronium model close-coupling approximation (CCA) with and without electron exchange. Elastic, excitation and quenching cross sections are reported at low and medium energies. The effect of electron exchange is found to be significant at low energies. The ratio of quenching to the total cross section (the conversion ratio) approaches the value of 0.25 with increase of energy, as expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.