Numerical approximation of the Ginzburg-Landau equation with memory effects in the dynamics of phase transitions


Autoria(s): Cassol-Seewald, N. C.; Copetti, M. I. M.; Krein, Gastão Inácio
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/09/2008

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

We consider the out-of-equilibrium time evolution of a nonconserved order parameter using the Ginzburg-Landau equation including memory effects. Memory effects are expected to play important role on the nonequilibrium dynamics for fast phase transitions, in which the time scales of the rapid phase conversion are comparable to the microscopic time scales. We consider two numerical approximation schemes based on Fourier collocation and finite difference methods and perform a numerical analysis with respect to the existence, stability and convergence of the schemes. We present results of direct numerical simulations for one and three spatial dimensions, and examine numerically the stability and convergence of both approximation schemes. (C) 2008 Elsevier B.V. All rights reserved.

Formato

297-309

Identificador

http://dx.doi.org/10.1016/j.cpc.2008.03.001

Computer Physics Communications. Amsterdam: Elsevier B.V., v. 179, n. 5, p. 297-309, 2008.

0010-4655

http://hdl.handle.net/11449/24187

10.1016/j.cpc.2008.03.001

WOS:000259077200002

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Computer Physics Communications

Direitos

closedAccess

Palavras-Chave #nonequilibrium phase transition #spinodal decomposition #Ginzburg-Landau equation #numerical analysis
Tipo

info:eu-repo/semantics/article