337 resultados para VHDL Quartus
Resumo:
A lo largo de la historia, nuestro planeta ha atravesado numerosas y diferentes etapas. Sin embargo, desde finales del cretácico no se vivía un cambio tan rápido como el actual. Y a la cabeza del cambio, nosotros, el ser humano. De igual manera que somos la causa, debemos ser también la solución, y el análisis a gran escala de la tierra está siendo un punto de interés para la comunidad científica en los últimos años. Prueba de ello es que, cada vez con más frecuencia, se lanzan gran cantidad de satélites cuya finalidad es el análisis, mediante fotografías, de la superficie terrestre. Una de las técnicas más versátiles para este análisis es la toma de imágenes hiperespectrales, donde no solo se captura el espectro visible, sino numerosas longitudes de onda. Suponen, eso sí un reto tecnológico, pues los sensores consumen más energía y las imágenes más memoria, ambos recursos escasos en el espacio. Dado que el análisis se hace en tierra firme, es importante una transmisión de datos eficaz y rápida. Por ello creemos que la compresión en tiempo real mediante FPGAs es la solución idónea, combinando un bajo consumo con una alta tasa de compresión, posibilitando el análisis ininterrumpido del astro en el que vivimos. En este trabajo de fin de grado se ha realizado una implementación sobre FPGA, utilizando VHDL, del estándar CCSDS 123. Este está diseñado para la compresión sin pérdida de imágenes hiperespectrales, y permite una amplia gama de configuraciones para adaptarse de manera óptima a cualquier tipo de imagen. Se ha comprobado exitosamente la validez de la implementación comparando los resultados obtenidos con otras implementaciones (software) existentes. Las principales ventajas que presentamos aquí es que se posibilita la compresión en tiempo real, obteniendo además un rendimiento energético muy prometedor. Estos resultados mejoran notablemente los de una implementación software del algoritmo, y permitirán la compresión de las imágenes a bordo de los satélites que las toman.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.
Resumo:
SD card (Secure Digital Memory Card) is widely used in portable storage medium. Currently, latest researches on SD card, are mainly SD card controller based on FPGA (Field Programmable Gate Array). Most of them are relying on API interface (Application Programming Interface), AHB bus (Advanced High performance Bus), etc. They are dedicated to the realization of ultra high speed communication between SD card and upper systems. Studies about SD card controller, really play a vital role in the field of high speed cameras and other sub-areas of expertise. This design of FPGA-based file systems and SD2.0 IP (Intellectual Property core) does not only exhibit a nice transmission rate, but also achieve the systematic management of files, while retaining a strong portability and practicality. The file system design and implementation on a SD card covers the main three IP innovation points. First, the combination and integration of file system and SD card controller, makes the overall system highly integrated and practical. The popular SD2.0 protocol is implemented for communication channels. Pure digital logic design based on VHDL (Very-High-Speed Integrated Circuit Hardware Description Language), integrates the SD card controller in hardware layer and the FAT32 file system for the entire system. Secondly, the document management system mechanism makes document processing more convenient and easy. Especially for small files in batch processing, it can ease the pressure of upper system to frequently access and process them, thereby enhancing the overall efficiency of systems. Finally, digital design ensures the superior performance. For transmission security, CRC (Cyclic Redundancy Check) algorithm is for data transmission protection. Design of each module is platform-independent of macro cells, and keeps a better portability. Custom integrated instructions and interfaces may facilitate easily to use. Finally, the actual test went through multi-platform method, Xilinx and Altera FPGA developing platforms. The timing simulation and debugging of each module was covered. Finally, Test results show that the designed FPGA-based file system IP on SD card can support SD card, TF card and Micro SD with 2.0 protocols, and the successful implementation of systematic management for stored files, and supports SD bus mode. Data read and write rates in Kingston class10 card is approximately 24.27MB/s and 16.94MB/s.
Resumo:
This work presents the modeling and FPGA implementation of digital TIADC mismatches compensation systems. The development of the whole work follows a top-down methodology. Following this methodology was developed a two channel TIADC behavior modeling and their respective offset, gain and clock skew mismatches on Simulink. In addition was developed digital mismatch compensation system behavior modeling. For clock skew mismatch compensation fractional delay filters were used, more specifically, the efficient Farrow struct. The definition of wich filter design methodology would be used, and wich Farrow structure, required the study of various design methods presented in literature. The digital compensation systems models were converted to VHDL, for FPGA implementation and validation. These system validation was carried out using the test methodology FPGA In Loop . The results obtained with TIADC mismatch compensators show the high performance gain provided by these structures. Beyond this result, these work illustrates the potential of design, implementation and FPGA test methodologies.
Resumo:
La complejidad de los sistemas actuales de computación ha obligado a los diseñadores de herramientas CAD/CAE a acondicionar lenguajes de alto nivel, tipo C++, para la descripción y automatización de estructuras algorítmicas a sus correspondientes diseños a nivel físico. Los proyectos a realizar se encuadran dentro de una línea de trabajo consistente en estudiar la programación, funcionamiento de los lenguajes SystemC y SystemVerilog, sus herramientas asociadas y analizar cómo se adecuan a las restricciones temporales y físicas de los componentes (librerías, IP's, macro-celdas, etc) para su directa implementación. En una primera fase, y para este TFG, se estudiarán los componentes que conforman el framework elegido que es SystemC y su inclusión en herramientas de diseño arquitectural. Este conocimiento nos ayudará a entender el funcionamiento y capacidad de dicha herramienta y proceder a su correcto manejo. Analizaremos y estudiaremos unos de los lenguajes de alto nivel de los que hace uso dicha herramienta. Una vez entendido el contexto de aplicación, sus restricciones y sus elementos, diseñaremos una estructura hardware. Una vez que se tenga el diseño, se procederá a su implementación haciendo uso, si es necesario, de simuladores. El proyecto finalizará con una definición de un conjunto de pruebas con el fin de verificar y validar la usabilidad y viabilidad de nuestra estructura hardware propuesta.