888 resultados para Two-stage stochastic model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines differences in net selling price for residential real estate across male and female agents. A sample of 2,020 home sales transactions from Fulton County, Georgia are analyzed in a two-stage least squares, geospatial autoregressive corrected, semi-log hedonic model to test for gender and gender selection effects. Although agent gender seems to play a role in naïve models, its role becomes inconclusive as variables controlling for possible price and time on market expectations of the buyers and sellers are introduced to the models. Clear differences in real estate sales prices, time on market, and agent incomes across genders are unlikely due to differences in negotiation performance between genders or the mix of genders in a two-agent negotiation. The evidence suggests an interesting alternative to agent performance: that buyers and sellers with different reservation price and time on market expectations, such as those selling foreclosure homes, tend to select agents along gender lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the behavior of a single-cell protozoan in a narrow tubular ring. This environment forces them to swim under a one-dimensional periodic boundary condition. Above a critical density, single-cell protozoa aggregate spontaneously without external stimulation. The high-density zone of swimming cells exhibits a characteristic collective dynamics including translation and boundary fluctuation. We analyzed the velocity distribution and turn rate of swimming cells and found that the regulation of the turing rate leads to a stable aggregation and that acceleration of velocity triggers instability of aggregation. These two opposing effects may help to explain the spontaneous dynamics of collective behavior. We also propose a stochastic model for the mechanism underlying the collective behavior of swimming cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for describing the distribution of observed temperatures on any day of the year such that the distribution and summary statistics of interest derived from the distribution vary smoothly through the year. The method removes the noise inherent in calculating summary statistics directly from the data thus easing comparisons of distributions and summary statistics between different periods. The method is demonstrated using daily effective temperatures (DET) derived from observations of temperature and wind speed at De Bilt, Holland. Distributions and summary statistics are obtained from 1985 to 2009 and compared to the period 1904–1984. A two-stage process first obtains parameters of a theoretical probability distribution, in this case the generalized extreme value (GEV) distribution, which describes the distribution of DET on any day of the year. Second, linear models describe seasonal variation in the parameters. Model predictions provide parameters of the GEV distribution, and therefore summary statistics, that vary smoothly through the year. There is evidence of an increasing mean temperature, a decrease in the variability in temperatures mainly in the winter and more positive skew, more warm days, in the summer. In the winter, the 2% point, the value below which 2% of observations are expected to fall, has risen by 1.2 °C, in the summer the 98% point has risen by 0.8 °C. Medians have risen by 1.1 and 0.9 °C in winter and summer, respectively. The method can be used to describe distributions of future climate projections and other climate variables. Further extensions to the methodology are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Sub-Saharan Africa (SSA) the technological advances of the Green Revolution (GR) have not been very successful. However, the efforts being made to re-introduce the revolution call for more socio-economic research into the adoption and the effects of the new technologies. The paper discusses an investigation on the effects of GR technology adoption on poverty among households in Ghana. Maximum likelihood estimation of a poverty model within the framework of Heckman's two stage method of correcting for sample selection was employed. Technology adoption was found to have positive effects in reducing poverty. Other factors that reduce poverty include education, credit, durable assets, living in the forest belt and in the south of the country. Technology adoption itself was also facilitated by education, credit, non-farm income and household labour supply as well as living in urban centres. Inarguably, technology adoption can be taken seriously by increasing the levels of complementary inputs such as credit, extension services and infrastructure. Above all, the fundamental problems of illiteracy, inequality and lack of effective markets must be addressed through increasing the levels of formal and non-formal education, equitable distribution of the 'national cake' and a more pragmatic management of the ongoing Structural Adjustment Programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for the recognition of complex actions. Our method combines automatic learning of simple actions and manual definition of complex actions in a single grammar. Contrary to the general trend in complex action recognition that consists in dividing recognition into two stages, our method performs recognition of simple and complex actions in a unified way. This is performed by encoding simple action HMMs within the stochastic grammar that models complex actions. This unified approach enables a more effective influence of the higher activity layers into the recognition of simple actions which leads to a substantial improvement in the classification of complex actions. We consider the recognition of complex actions based on person transits between areas in the scene. As input, our method receives crossings of tracks along a set of zones which are derived using unsupervised learning of the movement patterns of the objects in the scene. We evaluate our method on a large dataset showing normal, suspicious and threat behaviour on a parking lot. Experiments show an improvement of ~ 30% in the recognition of both high-level scenarios and their composing simple actions with respect to a two-stage approach. Experiments with synthetic noise simulating the most common tracking failures show that our method only experiences a limited decrease in performance when moderate amounts of noise are added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We test the ability of a two-dimensional flux model to simulate polynya events with narrow open-water zones by comparing model results to ice-thickness and ice-production estimates derived from thermal infrared Moderate Resolution Imaging Spectroradiometer (MODIS) observations in conjunction with an atmospheric dataset. Given a polynya boundary and an atmospheric dataset, the model correctly reproduces the shape of an 11 day long event, using only a few simple conservation laws. Ice production is slightly overestimated by the model, owing to an underestimated ice thickness. We achieved best model results with the consolidation thickness parameterization developed by Biggs and others (2000). Observed regional discrepancies between model and satellite estimates might be a consequence of the missing representation of the dynamic of the thin-ice thickening (e.g. rafting). We conclude that this simplified polynya model is a valuable tool for studying polynya dynamics and estimating associated fluxes of single polynya events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small and medium sized enterprises (SMEs) play an important role in the European economy. A critical challenge faced by SME leaders, as a consequence of the continuing digital technology revolution, is how to optimally align business strategy with digital technology to fully leverage the potential offered by these technologies in pursuit of longevity and growth. There is a paucity of empirical research examining how e-leadership in SMEs drives successful alignment between business strategy and digital technology fostering longevity and growth. To address this gap, in this paper we develop an empirically derived e-leadership model. Initially we develop a theoretical model of e-leadership drawing on strategic alignment theory. This provides a theoretical foundation on how SMEs can harness digital technology in support of their business strategy enabling sustainable growth. An in-depth empirical study was undertaken interviewing 42 successful European SME leaders to validate, advance and substantiate our theoretically driven model. The outcome of the two stage process – inductive development of a theoretically driven e-leadership model and deductive advancement to develop a complete model through in-depth interviews with successful European SME leaders – is an e-leadership model with specific constructs fostering effective strategic alignment. The resulting diagnostic model enables SME decision makers to exercise effective e-leadership by creating productive alignment between business strategy and digital technology improving longevity and growth prospects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Hamiltonian system perturbed by two waves with particular wave numbers can present robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at some defined positions. When robust tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. Our results indicate that the considered particular solution for the two waves Hamiltonian model shows plenty of robust tori blocking radial transport. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed models may be defined with or without reference to sampling, and can be used to predict realized random effects, as when estimating the latent values of study subjects measured with response error. When the model is specified without reference to sampling, a simple mixed model includes two random variables, one stemming from an exchangeable distribution of latent values of study subjects and the other, from the study subjects` response error distributions. Positive probabilities are assigned to both potentially realizable responses and artificial responses that are not potentially realizable, resulting in artificial latent values. In contrast, finite population mixed models represent the two-stage process of sampling subjects and measuring their responses, where positive probabilities are only assigned to potentially realizable responses. A comparison of the estimators over the same potentially realizable responses indicates that the optimal linear mixed model estimator (the usual best linear unbiased predictor, BLUP) is often (but not always) more accurate than the comparable finite population mixed model estimator (the FPMM BLUP). We examine a simple example and provide the basis for a broader discussion of the role of conditioning, sampling, and model assumptions in developing inference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When missing data occur in studies designed to compare the accuracy of diagnostic tests, a common, though naive, practice is to base the comparison of sensitivity, specificity, as well as of positive and negative predictive values on some subset of the data that fits into methods implemented in standard statistical packages. Such methods are usually valid only under the strong missing completely at random (MCAR) assumption and may generate biased and less precise estimates. We review some models that use the dependence structure of the completely observed cases to incorporate the information of the partially categorized observations into the analysis and show how they may be fitted via a two-stage hybrid process involving maximum likelihood in the first stage and weighted least squares in the second. We indicate how computational subroutines written in R may be used to fit the proposed models and illustrate the different analysis strategies with observational data collected to compare the accuracy of three distinct non-invasive diagnostic methods for endometriosis. The results indicate that even when the MCAR assumption is plausible, the naive partial analyses should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mauri Model DMF is unique in its approach to the management of water resources as the framework offers a transparent and inclusive approach to considering the environmental, economic, social and cultural aspects of the decisions being contemplated. The Mauri Model DMF is unique because it is capable of including multiple-worldviews and adopts mauri (intrinsic value or well-being) in the place of the more common monetised assessments of pseudo sustainability using Cost Benefit Analysis. The Mauri Model DMF uses a two stage process that first identifies participants’ worldviews and inherent bias regarding water resource management, and then facilitates transparent assessment of selected sustainability performance indicators. The assessment can then be contemplated as the separate environmental, economic, social and cultural dimensions of the decision, and collectively as an overall result; or the priorities associated with different worldviews can be applied to determine the sensitivity of the result to different cultural contexts or worldviews.