902 resultados para Texture géométrique
Resumo:
Cereals microstructure is one of the primary quality attributes of cereals. Cereals rehydration and milk diffusion depends on such microstructure and thus, the crispiness and the texture, which will make it more palatable for the final consumer. Magnetic Resonance Imaging (MRI) is a very powerful topographic tool since acquisition parameter leads to a wide possibility for identifying textures, structures and liquids mobility. It is suited for non-invasive imaging of water and fats. Rehydration and diffusion cereals processes were measured by MRI at different times and using two different kinds of milk, varying their fat level. Several images were obtained. A combination of textural analysis (based on the analysis of histograms) and segmentation methods (in order to understand the rehydration level of each variety of cereals) were performed. According to the rehydration level, no advisable clustering behavior was found. Nevertheless, some differences were noticeable between the coating, the type of milk and the variety of cereals
Resumo:
Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.
Resumo:
We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes.
Resumo:
We present an innovative system to encode and transmit textured multi-resolution 3D meshes in a progressive way, with no need to send several texture images, one for each mesh LOD (Level Of Detail). All texture LODs are created from the finest one (associated to the finest mesh), but can be re- constructed progressively from the coarsest thanks to refinement images calculated in the encoding process, and transmitted only if needed. This allows us to adjust the LOD/quality of both 3D mesh and texture according to the rendering power of the device that will display them, and to the network capacity. Additionally, we achieve big savings in data transmission by avoiding altogether texture coordinates, which are generated automatically thanks to an unwrapping system agreed upon by both encoder and decoder.
Resumo:
In this paper we present a continuum theory for large strain anisotropic elastoplasticity based on a decomposition of the modified plastic velocity gradient into energetic and dissipative parts. The theory includes the Armstrong and Frederick hardening rule as well as multilayer models as special cases even for large strain anisotropic elastoplasticity. Texture evolution may also be modelled by the formulation, which allows for a meaningful interpretation of the terms of the dissipation equation