999 resultados para Symbolic Modelling
Resumo:
AimTo identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model.LocationSouth America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina.MethodsWe used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data.ResultsSimple bioclimatic models for Andean cats were highly predictive with only 3-4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions.Main conclusionsSimple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.
Resumo:
OBJECTIVE: The effect of minor orthopaedic day surgery (MiODS) on patient's mood. METHODS: A prospective population-based cohort study of 148 consecutive patients with age above 18 and less than 65, an American Society of Anaesthesiology (ASA) score of 1, and the requirement of general anaesthesia (GA) were included. The Medical Outcomes Study - Short Form 36 (SF-36), Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) were used pre- and post-operatively. RESULTS: The mean physical component score of SF-36 before surgery was 45.3 (SD=+/-10.1) and 8 weeks following surgery was 44.9 (SD=+/-11.04) [n=148, p=0.51, 95% CI=(-1.03 to 1.52)]. For the measurement of the changes in mood using BDI, BAI and SF-36, latent construct modelling was employed to increase validity. The covariance between mood pre- and post-operatively (cov=69.44) corresponded to a correlation coefficient, r=0.88 indicating that patients suffering a greater number of mood symptoms before surgery continue to have a greater number of symptoms following surgery. When the latent mood constructs were permitted to have different means the model fitted well with chi(2) (df=1)=0.86 for which p=0.77, thus the null hypothesis that MiODS has no effect on patient mood was rejected. CONCLUSIONS: MiODS affects patient mood which deteriorates at 8 weeks post-operatively regardless of the pre-operative patient mood state. More importantly patients suffering a greater number of mood symptoms before MiODS continue to have a greater number of symptoms following surgery.
Resumo:
BACKGROUND: New HIV infections in men who have sex with men (MSM) have increased in Switzerland since 2000 despite combination antiretroviral therapy (cART). The objectives of this mathematical modelling study were: to describe the dynamics of the HIV epidemic in MSM in Switzerland using national data; to explore the effects of hypothetical prevention scenarios; and to conduct a multivariate sensitivity analysis. METHODOLOGY/PRINCIPAL FINDINGS: The model describes HIV transmission, progression and the effects of cART using differential equations. The model was fitted to Swiss HIV and AIDS surveillance data and twelve unknown parameters were estimated. Predicted numbers of diagnosed HIV infections and AIDS cases fitted the observed data well. By the end of 2010, an estimated 13.5% (95% CI 12.5, 14.6%) of all HIV-infected MSM were undiagnosed and accounted for 81.8% (95% CI 81.1, 82.4%) of new HIV infections. The transmission rate was at its lowest from 1995-1999, with a nadir of 46 incident HIV infections in 1999, but increased from 2000. The estimated number of new infections continued to increase to more than 250 in 2010, although the reproduction number was still below the epidemic threshold. Prevention scenarios included temporary reductions in risk behaviour, annual test and treat, and reduction in risk behaviour to levels observed earlier in the epidemic. These led to predicted reductions in new infections from 2 to 26% by 2020. Parameters related to disease progression and relative infectiousness at different HIV stages had the greatest influence on estimates of the net transmission rate. CONCLUSIONS/SIGNIFICANCE: The model outputs suggest that the increase in HIV transmission amongst MSM in Switzerland is the result of continuing risky sexual behaviour, particularly by those unaware of their infection status. Long term reductions in the incidence of HIV infection in MSM in Switzerland will require increased and sustained uptake of effective interventions.
Resumo:
The Drivers Scheduling Problem (DSP) consists of selecting a set of duties for vehicle drivers, for example buses, trains, plane or boat drivers or pilots, for the transportation of passengers or goods. This is a complex problem because it involves several constraints related to labour and company rules and can also present different evaluation criteria and objectives. Being able to develop an adequate model for this problem that can represent the real problem as close as possible is an important research area.The main objective of this research work is to present new mathematical models to the DSP problem that represent all the complexity of the drivers scheduling problem, and also demonstrate that the solutions of these models can be easily implemented in real situations. This issue has been recognized by several authors and as important problem in Public Transportation. The most well-known and general formulation for the DSP is a Set Partition/Set Covering Model (SPP/SCP). However, to a large extend these models simplify some of the specific business aspects and issues of real problems. This makes it difficult to use these models as automatic planning systems because the schedules obtained must be modified manually to be implemented in real situations. Based on extensive passenger transportation experience in bus companies in Portugal, we propose new alternative models to formulate the DSP problem. These models are also based on Set Partitioning/Covering Models; however, they take into account the bus operator issues and the perspective opinions and environment of the user.We follow the steps of the Operations Research Methodology which consist of: Identify the Problem; Understand the System; Formulate a Mathematical Model; Verify the Model; Select the Best Alternative; Present the Results of theAnalysis and Implement and Evaluate. All the processes are done with close participation and involvement of the final users from different transportation companies. The planner s opinion and main criticisms are used to improve the proposed model in a continuous enrichment process. The final objective is to have a model that can be incorporated into an information system to be used as an automatic tool to produce driver schedules. Therefore, the criteria for evaluating the models is the capacity to generate real and useful schedules that can be implemented without many manual adjustments or modifications. We have considered the following as measures of the quality of the model: simplicity, solution quality and applicability. We tested the alternative models with a set of real data obtained from several different transportation companies and analyzed the optimal schedules obtained with respect to the applicability of the solution to the real situation. To do this, the schedules were analyzed by the planners to determine their quality and applicability. The main result of this work is the proposition of new mathematical models for the DSP that better represent the realities of the passenger transportation operators and lead to better schedules that can be implemented directly in real situations.
Resumo:
This paper evaluates new evidence on price setting practices and inflation persistence in the euro area with respect to its implications for macro modelling. It argues that several of the most commonly used assumptions in micro-founded macro models are seriously challenged by the new findings.
Resumo:
Youth is one of the phases in the life-cycle when some of the most decisivelife transitions take place. Entering the labour market or leaving parentalhome are events with important consequences for the economic well-beingof young adults. In this paper, the interrelationship between employment,residential emancipation and poverty dynamics is studied for eight Europeancountries by means of an econometric model with feedback effects. Resultsshow that youth poverty genuine state dependence is positive and highly significant.Evidence proves there is a strong causal effect between poverty andleaving home in Scandinavian countries, however, time in economic hardshipdoes not last long. In Southern Europe, instead, youth tend to leave theirparental home much later in order to avoid falling into a poverty state that ismore persistent. Past poverty has negative consequences on the likelihood ofemployment.
Resumo:
Despite the importance of supplier inducement and brand loyalty inthe drug purchasing process, little empirical evidence is to be foundwith regard to the influence that these factors exert on patients decisions. Under the new scenario of easier access to information,patients are becoming more demanding and even go as far asquestioning their physicians prescription. Furthermore, newregulation also encourages patients to adopt an active role in thedecision between brand-name and generic drugs. Using a statedpreference model based on a choice survey, I have found evidenceof how significant physicians prescription and pharmacists recommendation become throughout the drug purchase process and,to what extent, brand loyalty influences the final decision. Asfar as we are aware, this paper is the first to explicitlytake consumers preferences into account rather than focusingon the behavior of health professionals.
Resumo:
Context There are no evidence syntheses available to guide clinicians on when to titrate antihypertensive medication after initiation. Objective To model the blood pressure (BP) response after initiating antihypertensive medication. Data sources electronic databases including Medline, Embase, Cochrane Register and reference lists up to December 2009. Study selection Trials that initiated antihypertensive medication as single therapy in hypertensive patients who were either drug naive or had a placebo washout from previous drugs. Data extraction Office BP measurements at a minimum of two weekly intervals for a minimum of 4 weeks. An asymptotic approach model of BP response was assumed and non-linear mixed effects modelling used to calculate model parameters. Results and conclusions Eighteen trials that recruited 4168 patients met inclusion criteria. The time to reach 50% of the maximum estimated BP lowering effect was 1 week (systolic 0.91 weeks, 95% CI 0.74 to 1.10; diastolic 0.95, 0.75 to 1.15). Models incorporating drug class as a source of variability did not improve fit of the data. Incorporating the presence of a titration schedule improved model fit for both systolic and diastolic pressure. Titration increased both the predicted maximum effect and the time taken to reach 50% of the maximum (systolic 1.2 vs 0.7 weeks; diastolic 1.4 vs 0.7 weeks). Conclusions Estimates of the maximum efficacy of antihypertensive agents can be made early after starting therapy. This knowledge will guide clinicians in deciding when a newly started antihypertensive agent is likely to be effective or not at controlling BP.
Resumo:
Designing an efficient sampling strategy is of crucial importance for habitat suitability modelling. This paper compares four such strategies, namely, 'random', 'regular', 'proportional-stratified' and 'equal -stratified'- to investigate (1) how they affect prediction accuracy and (2) how sensitive they are to sample size. In order to compare them, a virtual species approach (Ecol. Model. 145 (2001) 111) in a real landscape, based on reliable data, was chosen. The distribution of the virtual species was sampled 300 times using each of the four strategies in four sample sizes. The sampled data were then fed into a GLM to make two types of prediction: (1) habitat suitability and (2) presence/ absence. Comparing the predictions to the known distribution of the virtual species allows model accuracy to be assessed. Habitat suitability predictions were assessed by Pearson's correlation coefficient and presence/absence predictions by Cohen's K agreement coefficient. The results show the 'regular' and 'equal-stratified' sampling strategies to be the most accurate and most robust. We propose the following characteristics to improve sample design: (1) increase sample size, (2) prefer systematic to random sampling and (3) include environmental information in the design'
Resumo:
Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.