994 resultados para Shear bond strenght
Resumo:
The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process. It is commonly used as flexural members in residential, industrial and commercial buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Test results have shown that the shear capacity of LSBs can be reduced considerably by the inclusion of web openings. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. A detailed experimental study consisting of 17 shear tests was therefore undertaken to investigate the shear behaviour and strength of LSBs with stiffened circular web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LSBs using a number of screw-fastening arrangements in order to develop a suitable stiffening arrangement for LSBs. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study of LSBs with stiffened web openings, and the results of their shear capacities and associated behavioural characteristics. Suitable screw-fastened plate stiffener arrangements have been recommended in order to restore the original shear capacity of LSBs.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a simultaneous cold-forming and dual electric resistance welding process. It is commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. Experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with circular web openings reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses. Both welding and varying screw-fastening arrangements were used to attach these stiffeners to the web of LSBs. Finite element models of LSBs with stiffened web openings in shear were developed to simulate their shear behaviour and strength of LSBs. They were then validated by comparing the results with experimental test results and used in a detailed parametric study. These studies have shown that plate stiffeners were the most suitable, however, their use based on the current American standards was found to be inadequate. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses have been proposed for LSBs with web openings to restore their original shear capacity. This paper presents the details of the numerical study and the results.
Resumo:
In present work, numerical solution is performed to study the confined flow of power-law non Newtonian fluids over a rotating cylinder. The main purpose is to evaluate drag and thermal coefficients as functions of the related governing dimensionless parameters, namely, power-law index (0.5 ≤ n ≤ 1.4), dimensionless rotational velocity (0 ≤ α ≤ 6) and the Reynolds number (100 ≤ Re ≤ 500). Over the range of Reynolds number, the flow is known to be steady. Results denoted that the increment of power law index and rotational velocity increases the drag coefficient due to momentum diffusivity improvement which is responsible for low rate of heat transfer, because the thicker the boundary layer, the lower the heat transfer is implemented.
Resumo:
This chapter provides an indepth examination of the history of product placement in the James Bond film series, specifically focusing on the emergence of technology and gadgetry in the series and the impact this had on the number and types of products that were placed in the films.
Resumo:
As one of the longest running franchises in cinema history, and with its well-established use of product placements, the James Bond film series provides an ideal framework within which to measure and catalogue the number and types of products used within a particular timeframe. This case study will draw upon extensive content analysis of the James Bond film series in order to chart the evolution of product placement across the franchise's 50 year history.
Resumo:
This paper presents the details of numerical studies on the shear behaviour and strength of lipped channel beams (LCBs) with stiffened web openings. Over the last couple of decades, cold-formed steel beams have been used extensively in residential, industrial and commercial buildings as primary load bearing structural components. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Our research has shown that shear strengths of LCBs were reduced by up to 70% due to the inclusion of web openings. Hence there is a need to improve the shear strengths of LCBs with web openings. A cost effective way to improve the detrimental effects of a large web opening is to attach appropriate stiffeners around the web openings in order to restore the original shear strength and stiffness of LCBs. Hence numerical studies were undertaken to investigate the shear strengths of LCBs with stiffened web openings. In this research, finite element models of LCBs with stiffened web openings in shear were developed to simulate the shear behaviour and strength of LCBs. Various stiffening methods using plate and LCB stud stiffeners attached to LCBs using screw-fastening were attempted. The developed models were then validated by comparing their results with experimental results and used in parametric studies. Both finite element analysis and experimental results showed that the stiffening arrangements recommended by past re-search for cold-formed steel channel beams are not adequate to restore the shear strengths of LCBs with web openings. Therefore new stiffener arrangements were proposed for LCBs with web openings based on experimental and finite element analysis results. This paper presents the details of finite element models and analyses used in this research and the results including the recommended stiffener arrangements.
Resumo:
This paper presents the direct strength method (DSM) equations for cold-formed steel beams subject to shear. Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and hollow flange beams (HFB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements and ignore the post-buckling strength. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LSBs, LCBs and HFBs. New direct strength method (DSM) based design equations were proposed to determine the ultimate shear capacities of cold-formed steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the DSM design equations. A new post-buckling coefficient was also introduced in the DSM equation to include the available post-buckling strength of cold-formed steel beams.
Resumo:
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several suggestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
Resumo:
This paper presents the details of experimental studies on the shear behaviour and strength of lipped channel beams (LCBs). The LCB sections are commonly used as flexural members in residential, industrial and commercial buildings. To ensure safe and efficient designs of LCBs, many research studies have been undertaken on the flexural behaviour of LCBs. To date, however, limited research has been conducted into the strength of LCB sections subject to shear actions. Therefore a detailed experimental study involving 20 tests was undertaken to investigate the shear behaviour and strength of LCBs. This research has shown the presence of increased shear capacity of LCBs due to the additional fixity along the web to flange juncture, but the current design rules (AS/NZS 4600 and AISI) ignore this effect and were thus found to be conservative. Therefore they were modified by including a higher elastic shear buckling coefficient. Ultimate shear capacity results obtained from the shear tests were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Hence the AS/NZS 4600 and AISI design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method (DSM) format. This paper presents the details of this study and the results including the modified shear design rules.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LCBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 40 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.