984 resultados para Pulse widths
Resumo:
The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.
Resumo:
We present designs of high-efficiency compression grating based on total internal reflection (TIR) for picosecond pulse laser at 1053 nm. The setup is devised by directly etching gratings into the bottom side of a prism so that light can successfully enter (or exit) the compression grating. Dependence of the -1 order diffraction efficiencies on the constructive parameters is analyzed for TE- and TM-polarized incident light at Littrow angle by using Fourier modal method in order to obtain optimal grating structure. The electric field enhancement within the high-efficiency TIR gratings is regarded as another criterion to optimize the structure of the TIR gratings. With the criterion of high diffraction efficiency, low electric field enhancement and sufficient manufacturing latitude, TIR compression gratings with optimized constructive parameters are obtained for TE- and TM-polarized incident light, respectively. The grating for TE-polarized light exhibits diffraction efficiencies higher than 0.95 within 23 nm bandwidth and relatively low square of electric field enhancement ratio of 5.7. Regardless of the internal electric field enhancement, the grating for TM-polarized light provides diffraction efficiencies higher than 0.95 within 42 nm bandwidth. With compact structure, such TIR compression gratings made solely of fused silica should be of great interest for application to chirped pulse amplification (CPA) systems. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.
Resumo:
We examined the potential for water chemistry to affect the width of daily increments in reef fish otoliths using both mensurative and manipulative methods. We found significant differences in the widths of increments in otoliths of the neon damselfish (Pomacentrus coelestis) collected in different habitats at One Tree Island on the Great Barrier Reef. We then used manipulative experiments to determine if natural water masses (ocean water vs. lagoon plume) could produce different incremental widths in otoliths in the absence of potentially confounding factors. Fish exposed to ocean water had significantly wider otolith increments for two of the three experiments. Elemental analyses indicated that Ba/Ca ratios were significantly correlated with increment widths for two of the three experiments and Sr/Ca ratios did not correlate with increment width for any experimental period. Variation in crystal-lattice orientation did not explain differences in increment width between treatments. Differences in water chemistry can affect increment widths in otoliths of reef fishes, potentially confounding patterns previously attributed to growth rate or condition alone.