975 resultados para Problemas matemáticos
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.
Resumo:
En este trabajo se presenta una metodología de investigación basada en la resolución de problemas para el análisis del razonamiento inductivo que llevan a cabo un grupo de 359 estudiantes que cursan 3¼ y 4¼ de ESO en España. Tras la justificación del interés en considerar las progresiones aritméticas de números naturales de órdenes 1 y 2 como contenido matemático, se muestran las variables que han permitido identificar unos tipos de problemas adecuados para nuestro objetivo de investigación relacionados con ese contenido matemático. Finalmente, se considera la prueba escrita individual como modo de recogida de información y se introduce la forma en que se realiza la corrección de los problemas seleccionados teniendo en cuenta el razonamiento inductivo y las variables consideradas para la selección de los tipos de problemas.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
Este trabajo presenta una interrelación del marco teórico de la evaluación PISA 2003 enmatemáticas y resolución de problemas en términos curriculares. Se sostiene que la nociónde competencia, hilo argumental del estudio, establece un planteamiento funcional de lasmatemáticas escolares. Esta articulación teórica tiene una lectura en términos de objetivos(competencias), contenidos (matemáticas escolares), metodología (matematización) y evaluación(tareas contextualizadas), cuya coherencia aquí se presenta y valora.Palabras clave: marco teórico, PISA, matemáticas, resolución de problemas,
Resumo:
El principal objetivo de nuestro trabajo es conseguir una alternativa multimedia al tratamiento, en clase, de la resolución de problemas; una presentación que atraiga la atención del alumnado en clase de matemáticas facilitando así la tarea al profesor, dotándolo de una herramienta adicional para trabajar empíricamente. Este trabajo multimedia de resolución de problemas supone un material novedoso para el aula, que vendrá a formar parte de las herramientas de que dispondrá el profesorado de matemáticas para despertar entre su alumnado el interés y el ánimo por disfrutar con las matemáticas; éste ha sido nuestro objetivo primordial a la hora de idear y más tarde crear este trabajo.
Resumo:
El documento para el área de Matemáticas de la serie Lineamientos Curriculares (MEN, 1998) es una directriz legal, conceptual y metodológica para el diseño, gestión y evaluación de los procesos de formación que adelantan los educadores matemáticos colombianos. En este sentido y particularmente en lo que se refiere al pensamiento aleatorio y su desarrollo, el Proyecto Curricular LEBEM9 brinda un espacio de formación para el estudio de los objetos estocásticos. En esta investigación se presenta una caracterización del significado institucional pretendido sobre Probabilidad como objeto disciplinar para brindar elementos de análisis sobre el proceso del proyecto curricular en esta dirección.
Resumo:
Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.
Resumo:
En este documento se presentan algunos elementos que permiten reflexionar sobre el proceso de modelación como estrategia didáctica para abordar la construcción de conceptos matemáticos en el aula de clase. Estos elementos se convierten en un avance de la investigación en curso “El proceso de modelación en las aulas escolares del suroeste antioqueño” financiado por el Comité para el desarrollo de la investigación (CODI) y la Dirección de Regionalización de la Universidad de Antioquia.
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.
Resumo:
Este artículo presenta la experiencia vivida en la elaboración y aplicación de una secuencia de actividades, que a través de promover el análisis cuidadoso del enunciado y el uso de las representaciones, pretenden lograr un mejor desempeño por parte de los estudiantes en la resolución de problemas.
Resumo:
Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.
Resumo:
Este artículo presenta los avances hechos, en términos de acciones y resultados, en el proyecto en torno a la resolución de problemas que se viene desarrollando desde hace más de tres años en nuestra institución. Cabe destacar logros como la integración del grupo de maestros del Área de Matemáticas, la comunicación oral y escrita que de los procesos y resultados de resolución de problemas hacen los estudiantes, y el progreso de los estudiantes en la elaboración y justificación de representaciones gráficas.