812 resultados para PHOTOLUMINESCENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

b-In2S3 thin filmsweredepositedonIndiumTinOxidesubstratesusingtheChemical SprayPyrolysistechnique.Metalcontactwasdepositedoverthe b-In2S3 thin filmto formahetero-structureofthetypeITO/b-In2S3/Metal.Theintensityoftwophoto- luminescenceemissionsfromthe b-In2S3 thin film,centeredat520and690nmcould be variedbytheapplicationofanexternalbiasvoltagetothishetero-structure.The emissionscouldbeswitchedonoroffdependinguponthemagnitudeoftheexternal appliedbiasvoltage.Thusthepresenceoftwoconductingstatesinthishetero-structure could beidentified.Thetemporalvariationinintensityofthephotoluminescence emissionwiththeapplicationofthebiasvoltagehasalsobeenstudied.Thecondition underwhichphotoluminescencequenchingoccurshasbeenrepresentedbyafirst order differentialequationbetweendiffusionlengthandcarrierconcentration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work introduced the novel conception of complex coupled hybrid VCSELs for the first time. Alternating organic and inorganic layers in the lasers provide periodic variation of refractive index and optical gain, which enable single mode operation and low threshold of the VCSELs. Model calculations revealed great reduction of the lasing threshold with factors over 30, in comparison with the existing micro-cavity lasers. Tunable green VCSEL has been also designed, implemented and analyzed taking advantage of the broad photoluminescence spectra of the organics. Free standing optical thin films without compressive stress are technologically implemented. Multiple membrane stacks with air gap in between have been fabricated for the implementation of complex coupled VCSEL structures. Complex coupled hybrid VCSEL is a very promising approach to fill the gaps in the green spectral range of the semiconductor lasers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work investigation of the QDs formation and the fabrication of QD based semiconductor lasers for telecom applications are presented. InAs QDs grown on AlGaInAs lattice matched to InP substrates are used to fabricate lasers operating at 1.55 µm, which is the central wavelength for far distance data transmission. This wavelength is used due to its minimum attenuation in standard glass fibers. The incorporation of QDs in this material system is more complicated in comparison to InAs QDs in the GaAs system. Due to smaller lattice mismatch the formation of circular QDs, elongated QDs and quantum wires is possible. The influence of the different growth conditions, such as the growth temperature, beam equivalent pressure, amount of deposited material on the formation of the QDs is investigated. It was already demonstrated that the formation process of QDs can be changed by the arsenic species. The formation of more round shaped QDs was observed during the growth of QDs with As2, while for As4 dash-like QDs. In this work only As2 was used for the QD growth. Different growth parameters were investigated to optimize the optical properties, like photoluminescence linewidth, and to implement those QD ensembles into laser structures as active medium. By the implementation of those QDs into laser structures a full width at half maximum (FWHM) of 30 meV was achieved. Another part of the research includes the investigation of the influence of the layer design of lasers on its lasing properties. QD lasers were demonstrated with a modal gain of more than 10 cm-1 per QD layer. Another achievement is the large signal modulation with a maximum data rate of 15 Gbit/s. The implementation of optimized QDs in the laser structure allows to increase the modal gain up to 12 cm-1 per QD layer. A reduction of the waveguide layer thickness leads to a shorter transport time of the carriers into the active region and as a result a data rate up to 22 Gbit/s was achieved, which is so far the highest digital modulation rate obtained with any 1.55 µm QD laser. The implementation of etch stop layers into the laser structure provide the possibility to fabricate feedback gratings with well defined geometries for the realization of DFB lasers. These DFB lasers were fabricated by using a combination of dry and wet etching. Single mode operation at 1.55 µm with a high side mode suppression ratio of 50 dB was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniformly distributed ZnO nanorods with diameter 70-100 nm and 1-2μm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip (needle shape) to flat tip (rod shape). These kinds of structure are useful in laser and field emission application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniformly distributed ZnO nanorods with diameter 80-120 nm and 1-2µm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip with high aspect ratio to flat tip with smaller aspect ratio. These kinds of structure are useful in laser and field emission application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. However, high In content in InGaN layers will result in a significant degradation of the crystalline quality of the epitaxial layers. In addition, unlike other III-V compound semiconductors, the ratio of gallium to indium incorporated in InGaN is in general not a simple function of the metal atomic flux ratio, f[subscript Ga]/f[subscript In]. Instead, In incorporation is complicated by the tendency of gallium to incorporate preferentially and excess In to form metallic droplets on the growth surface. This phenomenon can definitely affect the In distribution in the InGaN system. Scanning electron microscopy, room temperature photoluminescence, and X-ray diffraction techniques have been used to characterize InGaN layer grown on InN and InGaN buffers. The growth was done on c-plane sapphire by MOCVD. Results showed that green emission was obtained which indicates a relatively high In incorporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoporous GaN films are prepared by UV assisted electrochemical etching using HF solution as an electrolyte. To assess the optical quality and morphology of these nanoporous films, micro-photoluminescence (PL), micro-Raman scattering, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques have been employed. SEM and AFM measurements revealed an average pore size of about 85-90 nm with a transverse dimension of 70-75 nm. As compared to the as-grown GaN film, the porous layer exhibits a substantial photoluminescence intensity enhancement with a partial relaxation of compressive stress. Such a stress relaxation is further confirmed by the red shifted E₂(TO) phonon peak in the Raman spectrum of porous GaN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new erbium(III) complex of picolinic acid (Hpic), ["Bu4N][Er(pic)(4)].5.5H(2)O, was synthesized and the crystal structure determined by single-crystal X-ray diffraction. The compound was further characterized using IR, Raman, H-1 NMR and elemental analysis. The picolinate ligands (pic(-)) are coordinated through N,O-chelation to the erbium cations, as shown by X-ray diffraction and spectroscopic results, leading to an eight coordinate complex. Photoluminescence measurements were performed for this compound which exhibits infrared emission. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two complex heterometallic salts with formulae Tl-6[Fe(CN)(6)](1) (33)(NO3)(OH) (1) and [Co(bpy)(2)(CN)(2)](2){[Ag(CN)(2)](0) (5)[Fe(CN)(6)](0) (5)} 8H(2)O (2) have been synthesized and fully characterized Single crystal X-ray analyses reveal that compound 1 is comprised of discrete Tl+ cations and [Fe(CN)(6)](3-) anions together with OH- and NO3- anions Compound 2 contains [Co(bpy)(2)(CN)(2)](+) cations and {[Ag(CN)(2)][Fe(CN)(6)]}(-) anions together with eight molecules of water of crystallization Both structures form unprecedented three-dimensional supramolecular networks via non covalent interactions Another important observation is that the stereochemically active inert (lone) pair present on Tl+ plays little role in controlling the structure of 1 The water molecules in 2 play important roles in providing stability organizing a supramolecular network through hydrogen bonding In the syntheses of 1 and 2 Fe(II) is oxidized to Fe(III) and Co(II) to Co(III) respectively facilitating the formation of the salts that are obtained Both compounds exhibit photoluminescence emission in solution near the visible region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary mixed-metal variants of the one-dimensional MCN compounds (M = Cu, Ag, and Au) have been prepared and characterized using powder X-ray diffraction, vibrational spectroscopy, and total neutron diffraction. A solid solution with the AgCN structure exists in the (CuxAg1–x)CN system over the range (0 ≤ x ≤ 1). Line phases with compositions (Cu1/2Au1/2)CN, (Cu7/12Au5/12)CN, (Cu2/3Au1/3)CN, and (Ag1/2Au1/2)CN, all of which have the AuCN structure, are found in the gold-containing systems. Infrared and Raman spectroscopies show that complete ordering of the type [M–C≡N–M′–N≡C−]n occurs only in (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN. The sense of the cyanide bonding was determined by total neutron diffraction to be [Ag–NC–Au–CN−]n in (Ag1/2Au1/2)CN and [Cu–NC–Au–CN−]n in (Cu1/2Au1/2)CN. In contrast, in (Cu0.50Ag0.50)CN, metal ordering is incomplete, and strict alternation of metals does not occur. However, there is a distinct preference (85%) for the N end of the cyanide ligand to be bonded to copper and for Ag–CN–Cu links to predominate. Contrary to expectation, aurophilic bonding does not appear to be the controlling factor which leads to (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN adopting the AuCN structure. The diffuse reflectance, photoluminescence, and 1-D negative thermal expansion (NTE) behaviors of all three systems are reported and compared with those of the parent cyanide compounds. The photophysical properties are strongly influenced both by the composition of the individual chains and by how such chains pack together. The NTE behavior is also controlled by structure type: the gold-containing mixed-metal cyanides with the AuCN structure show the smallest contraction along the chain length on heating.