957 resultados para Leishmania (L) chagasi


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasites pose a threat to the health and lives of many millions of human beings. Among the pathogenic protozoa, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania donovani are hemoflagellates that cause particularly serious diseases (sleeping sickness, Chagas disease, and leishmaniasis, respectively). The drugs currently available to treat these infections are limited by marginal efficacy, severe toxicity, and spreading drug resistance. Camptothecin is an established antitumor drug and a well-characterized inhibitor of eukaryotic DNA topoisomerase I. When trypanosomes or leishmania are treated with camptothecin and then lysed with SDS, both nuclear and mitochondrial DNA are cleaved and covalently linked to protein. This is consistent with the existence of drug-sensitive topoisomerase I activity in both compartments. Camptothecin also inhibits the incorporation of [3H]thymidine in these parasites. These molecular effects are cytotoxic to cells in vitro, with EC50 values for T. brucei, T. cruzi, and L. donovani, of 1.5, 1.6, and 3.2 microM, respectively. For these parasites, camptothecin is an important lead for much-needed new chemotherapy, as well as a valuable tool for studying topoisomerase I activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful treatment in allergic, autoimmune, and infectious diseases often requires altering the nature of a detrimental immune response mediated by a particular CD4+ T helper (Th) cell subset. While several factors contribute to the development of CD4+ Th1 and Th2 cells, the requirements for switching an established response are not understood. Here we use infection with Leishmania major as a model to investigate those requirements. We report that treatment with interleukin 12 (IL-12), in combination with the antimony-based leishmanicidal drug Pentostam, induces healing in L. major-infected mice and that healing is associated with a switch from a Th2 to a Th1 response. The data suggest that decreasing antigen levels may be required for IL-12 to inhibit a Th2 response and enhance a Th1 response. These observations are important for treatment of nonhealing forms of human leishmaniasis and also demonstrate that in a chronic infectious disease an inappropriate Th2 response can be switched to an effective Th1 response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La leishmaniosis canina (Lcan) causada por Leishmania infantum es una zoonosis de distribución mundial endémica en la cuenca mediterránea. Es transmitida a humanos y animales mediante la picadura de las hembras de flebotomos, siendo el perro tanto un hospedador natural como el principal reservorio. Las manifestaciones clínicas de la infección por L. infantum en el perro son muy variables, desde una infección subclínica crónica hasta una enfermedad grave, que puede ser fatal. Debido a su compleja patogénesis y al importante papel que juega la respuesta inmunitaria, tanto el diagnóstico como el tratamiento y prevención de esta enfermedad son un reto desde el punto de vista veterinario y de Salud Pública. El objetivo fundamental de esta Tesis Doctoral ha sido encontrar nuevas alternativas tanto diagnósticas como terapéuticas en la Lcan. En cuanto al diagnóstico se ha evaluado el uso de muestras obtenidas de forma menos invasiva y dolorosa, y mejor aceptadas por los perros y por ende por sus propietarios. Y con respecto al tratamiento, se han evaluado dos nuevas moléculas buscando que sea más económico, eficaz, bien tolerado y de fácil administración. Para ello se han realizado tres ensayos clínicos: los dos primeros con un modelo experimental canino y el tercero en perros con infección natural por L. infantum. Para los dos primeros ensayos se empleó el mismo modelo experimental canino, que consistió en ocho perras de raza Beagle infectadas experimentalmente con L. infantum, a razón de 5x107 promastigotes/ml por vía intravenosa...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to pentavallent antimonial (Sb-v) agents such as sodium stibogluconate (SSG) is creating a major problem in the treatment of visceral leishmaniasis. In the present study the in vivo susceptibilities of Leishmania donovani strains, typed as SSG resistant (strain 200011) or SSG sensitive (strain 200016) on the basis of their responses to a single SSG dose of 300 mg of Sb-v/kg of body weight, to other antileishmanial drugs were determined. In addition, the role of glutathione in SSG resistance was investigated by determining the influence on SSG treatment of concomitant treatment with a nonionic surfactant vesicle formulation of buthionine sulfoximine (BSO), a specific inhibitor of the enzyme gamma-glutamylcysteine synthetase which is involved in glutathione biosynthesis, and SSG, on the efficacy of SSG treatment. L. donovani strains that were SSG resistant (strain 200011) and SSG sensitive (strain 200016) were equally susceptible to in vivo treatment with miltefosine, paromomycin and amphotericin B (Fungizone and AmBisome) formulations. Combined treatment with SSG and vesicular BSO significantly increased the in vivo efficacy of SSG against both the 200011 and the 200016 L. donovani strains. However, joint treatment that included high SSG doses was unexpectedly associated with toxicity. Measurement of glutathione levels in the spleens and livers of treated mice showed that the ability of the combined therapy to inhibit glutathione levels was also dependent on the SSG dose used and that the combined treatment exhibited organ-dependent effects. The SSG resistance exhibited by the L. donovani strains was not associated with cross-resistance to other classes of compounds and could be reversed by treatment with an inhibitor of glutathione biosynthesis, indicating that clinical resistance to antimonial drugs should not affect the antileishmanial efficacies of alternative drugs. In addition, it should be possible to identify a treatment regimen that could reverse antimony resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visceral Leishmaniasis (VL) is endemic in Brazil and the northeast region had the highest incidence of the disease , despite, in the last 30 years, it has spread to all geographic regions of the country. Leishmania infantum is the m ain etiological agent of VL in Latin America, Europe and North Africa. However, not all infected individuals develop the disease; in fact, the majority present spontaneous re solution of infection without symptoms. The evaluation of the immunological profil e has been mostly conducted stimulating, with Leishmania spp. antigen, peripheral blood mononuclear cells isolated from subjects with VL. These studies showed that VL patients had an inhibition of both, lymphocyte proliferation and proinflammatory response to Leishmania spp. antigen. Our study aimed to evaluate the immune response in active LV, cured post treatment and asymptomatic infection. To reach this aim, we analyzed immunophenotypic features related to activation, Treg and memory lymphocytes, by flow cytometry, as well as, evaluation of cytokine production, in ex vivo or in whole blood culture. In active VL volunteers, a longitu dinal study was conducted with reassessment at 4 and 14 months after clinical cure. The control group included individuals th at live d in endemic region and were either Positive Control, consisting of individuals with positive anti - L eishmania spp. serology and/or positive PCR for Leishmania  spp. and Negative Control composed by individuals with negative anti - Leishmania antibodie s serology and negative PCR for Leishmania . During VL, CD4 lymphocytes showed greater activation and memory profile s and were the major source of cytokines in culture when compared to CD8 lymphocytes , and these were not Leishmania specific. There were act ivated lymphocytes during VL (CD4 + CD69 + :4.9%) when compared to control groups, Positive (CD4 + CD69 + :1.96%, p=0.0045) and Negative (CD4 + CD69 + :1.35%, p=0.006), on the other hand, this was non - specific activation. The lymphocyte activation profile remain ed el evated even 14 months post treatmen t. A fter clinical cure , the activation was Leishmania specific (CD4 + CD25 + absence of SLA: 8.4%, and presence of SLA: 10.7% p=0.0279). CD8 + CD25 + lymphocytes were able to produce Leishmania specific IFN - γ in both, Positive Controls (absence of SLA 5.2% and presence of SLA: 9.5%, p=0.0391) and Cured 4 month (absence of SLA: 3.9%; presence of SLA: 10.7% p=0.0098). Whole blood culture cells, of VL patients, were able to produce IFN - γ, by SLA stimulation (absence of SLA: 28.0 pg ∕mL, and presence: 44.3 pg∕mL p=0.0020) as well as recovered groups (absence of SLA 2.3 pg∕mL and presence of SLA 139.8 pg∕mL, p=0.0005). However, the high level of IL - 10 seem ed to inhibit pro - inflammatory activity of IFN - γ and TNF - α during symptomatic dis ease . Unlike other pro - inflammatory cytokines, active VL group d id not produce Leishmania specific IL - 2 (absence of SLA 2.4 pg∕mL and presence of SLA: 2.6 pg∕mL). Based on these data we conclude that the restoration of lymphocyte activation and decreased i n IL - 10 Leishmania specific production were related to a protective immune profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leishmaniases are neglected tropical diseases with an urgent need for effective drugs. Better understanding of the metabolism of the causative parasites will hopefully lead to development of new compounds targeted at critical points of the parasite’s biochemical pathways. In my work I focused on the pentose phosphate pathway of Leishmania, specifically on transketolase, sugar utilisation, and comparison between insect and mammalian infective stages of the parasites. The pentose phosphate pathway (PPP) is the major cellular source of NADPH, an agent critical for oxidative stress defence. The PPP uses glucose, reduces the NADP+ cofactor and produces various sugar phosphates by mutual interconversions. One of the enzymes involved in this latter part is transketolase (TKT). A Leishmania mexicana cell line deleted in transketolase (Δtkt) was assessed regarding viability, sensitivity to a range of drugs, changes in metabolism, and infectivity. The Δtkt cell line had no obvious growth defect in the promastigote stage, but it was more sensitive to an oxidative stress inducing agent and most of the drugs tested. Most importantly, the Δtkt cells were not infective to mice, establishing TKT as a new potential drug target. Metabolomic analyses revealed multiple changes as a consequence of TKT deletion. Levels of the PPP intermediates upstream of TKT increased substantially, and were diverted into additional reactions. The perturbation triggered further changes in metabolism, resembling the ‘stringent metabolic response’ of amastigotes. The Δtkt cells consumed less glucose and glycolytic intermediates were decreased indicating a decrease in flux, and metabolic end products were diminished in production. The decrease in glycolysis was possibly caused by inhibition of fructose-1,6-bisphosphate aldolase by accumulation of the PPP intermediates 6-phosphogluconate and ribose 5-phosphate. The TCA cycle was fuelled by alternative carbon sources, most likely amino acids, instead of glucose. It remains unclear why deletion of TKT is lethal for amastigotes, increased sensitivity to oxidative stress or drop in mannogen levels may contribute, but no definite conclusions can be made. TKT localisation indicated interesting trends too. The WT enzyme is present in the cytosol and glycosomes, whereas a mutant version, truncated by ten amino acids, but retaining a C-terminal targeting sequence, localised solely to glycosomes. Surprisingly, cells expressing purely cytosolic or glycosomal TKT did not have different phenotypes regarding growth, oxidative stress sensitivity or any detected changes in metabolism. Hence, control of the subcellular localisation remains unclear as well as its function. However, these data are in agreement with the presumed semipermeable nature of the glycosome. Further, L. mexicana promastigote cultures were grown in media with different combinations of labelled glucose and ribose and their incorporation into metabolism was followed. Glucose was the preferred carbon source, but when not available, it could be fully replaced with ribose. I also compared metabolic profiles from splenic amastigotes, axenic amastigotes and promastigotes of L. donovani. Metabolomic analysis revealed a substantial drop in amino acids and other indications coherent with a stringent metabolic response in amastigotes. Despite some notable differences, axenic and splenic amastigotes demonstrated fairly similar results both regarding the total metabolic profile and specific metabolites of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted by the bite of the sand flies Lutzomia longipalpis.The main domestic reservoir is the dog, while foxes and opposums are the known wild reservoirs. However, identification of natural infections with L. infantum in rodents appears for need of investigating the participation of these rodents how source of infection of the parasite. In the present work the Leishmania infantum infection was investigated in rodents captured in Rio Grande do Norte, aiming at to offer subsidies to the understanding of the epidemic chains of LVA in the State. Thirteen Galea spixii were distributed in four groups, being G1 the group control with four animals and the others, G2, G3 and G4, with three animals each. Those animals were intraperitoneally inoculated with 107 promastigotas of L. infantum and accompanied for, respectively, 30, 90 and 180 days. Weekly the animals were monitored as for the corporal weight and rectal temperature. At the end of each stipulated period the animals were killed. Blood were used for determination of the parameters biochemical and haematological, PCR, ELISA, microscopic examination and cultivation in NNN medium. Liver, spleen and lymph node were used in Giemsa-stained impression and cultivation in NNN medium. Liver and spleen fragments were still used in PCR and histopathological, respectively. At the same time 79 rodents of the species Rattus rattus, Bolomys lasiurus, Oligoryzomys nigripis, Oryzomys subflavus and Trichomys apereoides were captured in the Municipal districts of Brejinho, Campo Grande, Coronel Ezequiel, Passa e Fica and Vázea for identification of natural infection with L. infantum. Evidence of infection was checked by direct examination of Giemsa-stained impression of liver, spleen and blood and culture of these tissues in NNN medium. Antibodies were researched by ELISA. They were not found differences among the weigh corporal final, rectal temperature and biochemical and haematological parameters of the Galea spixii controls and infected. The rectal temperature of the animals varied from 36OC to 40OC. For the first time values of the haematocrit (33,6% to 42,8%), hemoglobin (10,2 to 14,5g/dl), erythrocyts number (4,67x106 to 6,90x106/mm3), total leukocytes (0,9x103 to 9,2x103/mm3), platelets (49x103 to 509x103/mm3) total proteins (1,56 to 6,06 g/dl), albumin (1,34 to 3,05 g/dl) and globulins (0,20 to 3,01 g/dl) of the Galea spixii were determined. The lymphocytes were the most abundant leucocytes. Infection for L. infantum was diagnosed in two animals euthanasied 180 days after the infection. In one of the animals was also identified antibodies anti-Leishmania. The parasite was not found in none of the five other species of rodents captured. Galea spixii are resistant to the infection for L. infantum and they are not good models for the study for visceral leishmaniose, although they can act as infection sources. More studies are necessary to determine the paper of the rodents in the epidemic chain of transmission of the visceral leishmaniose in the State of Rio Grande do Norte

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutritional status is an important determinant to the response against Leishmania infection, although few studies have characterized the molecular basis for the association found between malnutrition and the disease. Vitamin A supplementation has long been used in developing countries to prevent mortality by diarrheal and respiratory diseases, but there are no studies on the role of vitamin A in Leishmania infection, although we and others have found vitamin A deficiency in visceral Leishmaniasis (VL). Regulatory T cells are induced in vitro by vitamin A metabolites and are considered important cells implicated T CD4+ cell suppression in human VL. This work aimed to examine the correlation of nutritional status and the effect of vitamin A in the response against Leishmania infantum infection. A total of 179 children were studied: 31 had active VL, 33 VL history, 44 were DTH+ and 71 were DTH- and had negative antibody to Leishmania (DTH-/Ac-). Peripheral blood monuclear cells were isolated in a subgroup of 10 active VL and 16 DTH-/Ac- children and cultivated for 20h under 5 different conditions: 1) Medium, 2) Soluble promastigote L. infantum antigens (SLA), 3) All-trans retinoic acid (ATRA), 4) SLA + ATRA and 5) Concanavalin A. T CD4+CD25highFoxp3+, T CD4+CD25-Foxp3- and CD14+ monocytes were stained and studied by flow cytometry for IL-10, TGF-β and IL-17 production. Nutritional status was compromised in VL children, which presented lower BMI/Age and retinol concentrations when compared to healthy controls. We found a negative correlation between nutritional status (measured by BMI/Age and serum retinol) and anti-Leishmania antibodies and acute phase proteins. There was no correlation between nutritional status and parasite load. ATRA presented a dual effect in Treg cells and monocytes: In healthy children (DTH-/Ac-), it induced a regulatory response, increasing IL-10 and TGF-β production; in VL children it modulated the immune response, preventing increased IL-10 production after SLA stimulation. Furthermore, we found a positive correlation between BMI/Age and IL-17 production and negative correlation between serum retinol and IL-10 and TGF-β production in T CD4+CD25highFoxp3+ cells after SLA stimulus. Our results show a potential dual role of vitamin A in the immune system: improvement of regulatory profile during homeostasis and down modulation of IL-10 in Treg cells and monocytes during symptomatic VL. Therefore, the use of vitamin A concomitant to VL therapy might improve recovery from disease status in Leishmania infantum infection