975 resultados para ETHANOL FERMENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, four different process configurations, including three simultaneous saccharification and fermentation (SSF) schemes and one separate hydrolysis and fermentation (SHF) scheme, were compared, at 8% water-insoluble solids, regarding ethanol production from steam-pretreated and alkali-delignified sugar cane bagasse. Two configurations included a 16 h lasting enzymatic presaccharification prior to SSF, and the third one was a classical SSF without presaccharification. Cellulose conversion was higher for the delignified bagasse, and higher in SSF experiments than in SHF. The highest cellulose-to-ethanol conversion (around 60% in 24 h) and maximum ethanol volumetric productivities (0.29-0.30 g/L.h) were achieved in the presaccharification-assisted SSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of ethanol from biomass fermentation has gained much attention recently. Biomass cellulosic material is first converted into glucose either by chemical or by enzymatic process, and then glucose is fermented to ethanol. Considering the current scenario, where many efforts are devoted for the search of green routes to obtaining ethanol from renewable sources, this review presents the relationship between structure and properties of cellulosic material, pre-treatments and hydrolysis of cellulosic material, and structure and function of cellulase enzyme complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol is the most suitable substitute for oil-based fuels. The performance of the fermentation is affected by several factors, therefore the aim of this work was to evaluate the efficiency of the fermentation of a hydrolyzed must of sweet potato using three strains of the Saccharomyces cerevisiae. It was also evaluated the effect of three forms of the processes conduction in the fermentation yield, efficiency and viability of yeast at the end process. Among the parameters evaluated, only the cell viability showed significant difference. The strain PE-2 would be the most suitable for the fermentation of the hydrolysed sweet potato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the chemical composition of sugar cane spirits, fermented by different commercial Saccharomyces cerevisiae yeast strains and double distilled by pot still. Sugar cane juices were separately fermented by yeasts CA-11, Y-904, BG-1, PE-2, SA-1 and CAT-1 and distilled by pot still according to the methodology used for whisky production. The alcoholic liquids from first and second distillations were analyzed for concentrations of ethanol, volatile acidity, aldehydes, esters, furfural, higher alcohols and methanol. The sugar cane spirits derived from fermentation by the different yeast strains presented distinct chemical compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a five-week mini-project for a general chemistry laboratory course. Activities are included preparations of ethanol and sucrose solutions, calculation of concentrations, determination of densities with densimeters, sugarcane juice fermentation with CO2 capture in alkaline solution, distillation, and determination of amounts of ethanol and CO2 formed. Abilities and concepts normally present in practical general chemistry courses are covered: use of balances, volumetric glassware and densimeters, preparation of solutions, performing of dilutions, determination of solution densities, observation of chemical reactions, stoichiometric calculations, separation of mixtures, and titration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volatile fraction of sugar cane spirits plays a key role in the quality and acceptance of these beverages. The composition of this fraction is dependent on the way sugar cane collection, fermentation, distillation and aging are carried out. The materials used in these processes strongly influence chemical composition. Acetic acid, acetaldehyde, ethyl acetate, ethanol, 2.3-butanedione, n-propanol, 3-methyl-buthanol and isobuthanol were the major volatiles in spirits. Dimethyl sulfide and n-propanol impaired beverage flavor. Ethyl octanoate, 1.1-diethoxy-ethane, 2-phenylethanol and 3-methyl-butanol were important aroma contributors. Ageing allows the extraction of flavor-active components (e.g., phenolic compounds) from wood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted into the production of xylose by acid hydrolysis of rice husks and its subsequent bioconversion to xylitol. The parameters were optimised using the response surface methodology. The fermentation stage took place with the aid of the yeast species Candida guilliermondii and Candida tropicalis. An evaluation of the influence of several biomass pre-treatments was also performed. The effects of the acid concentration and hydrolysate pH on xylitol global yield were also assessed, and the highest yield of xylitol was 64.0% (w/w). The main products, xylose and xylitol, were identified and quantified by means of liquid chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.