940 resultados para Deep Brain-stimulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether the opportunity to avoid or escape the open arms of an elevated plus-maze (EPM) affects the antinociceptive response observed when mice are subjected to open arm confinement. Furthermore, in order to better characterize the relationship between emotion and antinociception in the EPM, we examined the behavioral effects of midazolam injection into the midbrain periaqueductal gray matter (PAG). As our main aim was to evaluate the relevance of different levels of approach-avoid conflict (i.e. The presence of open and closed arms) to maze-induced antinociception, mice were exposed to one of three types of EPM-a standard EPM (sEPM), an open EPM (oEPM: four open arms) or, as a control condition, an enclosed EPM (eEPM: four enclosed arms). Nociception was assessed using the formalin test. Twenty minutes after formalin injection (50 mu l, 2.5% formalin) into the dorsal right hind paw, mice received an intra-PAG injection of saline or midazolam (10-20 nmol). Five minutes later, they were individually exposed to one of the mazes for 10 min (25-35 min after formalin injection). Videotapes of the test sessions were scored for a variety of behavioral measures including time spent licking the formalin-injected paw. To examine whether the effects of midazolam on anxiety-like behavior may have been influenced by concurrent nociceptive stimulation (i.e. formalin pretreatment), naive mice were submitted to a similar procedure to that described above for the sEPM test but without formalin pretreatment. Results showed that mice exposed to the oEPM spent significantly less time licking the injected paw compared to groups exposed to either the sEPM or eEPM. Although exposure to the sEPM induced anxiety-like behaviors (i.e. open arm avoidance), it did not result in antinociception. Intra-PAG infusions of midazolam failed to block oEPM-induced antinociception or to alter sEPM-induced anxiety in mice that had received formalin injection. However, under normal test conditions (i.e. in the absence of formalin-induced nociceptive stimulation), intra-PAG midazolam produced clear anti-anxiety effects in mice exposed to the sEPM. Findings are discussed in terms of different emotional states induced by the oEPM and sEPM and the influence of concurrent nociceptive stimulation on the anti-anxiety effect of intra-PAG midazolam. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two groups of rats with electrolytic lesions of the medial and upper septal area (MUL) or, alternatively, of the anteroventral portion of the third ventricle (AV3V) and a third group of sham-operated rats were water loaded and received three carbachol injections into the locus coeruleus according to the following schedule: 1) prelesion, 2) on the second postlesion day and 3) on the seventh postlesion day. Both MUL and AV3V lesions inhibited the carbachol-induced natriuresis on the second postlesion day. Recovery was almost complete after MUL but not after AV3V lesion on the seventh day. Water deprivation also reduced the carbachol-induced natriuresis but passive hydration of AV3V animals did not avoid the impairment induced by the lesion. Transient seizure phenomena such as clonic convulsions, salivation and analgesia subsequent to carbachol injection were not altered by the lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbachol injected into the locus coeruleus (LC) induced a dose-dependent natriuresis in the rat. This natriuresis was maintained above control levels during the 120 min of urine sampling. Seizures and arterial blood pressure increase were also observed but they disappeared within 20 min after carbachol injection. Natriuresis was not obtained with either injections of carbachol outside the LC or with hypertonic solutions injected into the LC. Injection of atropine into the LC blocked the natriuresis induced by carbachol. In summary, our data show that carbachol induces natriuresis by an action on muscarinic receptors located in the LC region. © 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the participation and interaction between cholinergic and opiate receptors of the medial septal area (MSA) in the regulation of Na+, K+ and water excretion, drinking and blood pressure regulation. Male Holtzman rats were implanted with stainless steel cannulae opening into the MSA. Na+, K+ and water excretion, water intake and blood pressure were measured after injection of carbachol (cholinergic agonist), FK-33824 (an opiate agonist) + carbachol or naloxone (an opiate antagonist) + carbachol into MSA. Carbachol (0.5 or 2.0 nmol) induced an increase in Na+ and K+ excretion, water intake and blood pressure and reduced the urinary volume. FK-33824 reduced the urinary volume and Na+ and K+ excretion. Previous injection of FK-33824 (100 ng) into the MSA blocked the increases in Na+ and K+ excretion, water intake and blood pressure induced by carbachol. Naloxone (10 μg) produced no changes in the effect of 2.0 nmol carbachol, but potentiated the natriuretic effect induced by 0.5 nmol dose of carbachol. These data show an inhibitory effect of opiate receptors on the changes in cardiovascular, fluid and electrolyte balance induced by cholinergic stimulation of the MSA in rats. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The literature has shown that musical stimulation can influence the cardiovascular system, however, the neurophysiological aspects of this influence are not yet fully elucidated. Objective: This study describes the influence of music on the neurophysiological mechanisms in the human body, specifically the variable blood pressure, as well as the neural mechanisms of music processing. Methods: Searches were conducted in Medline, PEDro, Lilacs and SciELO using the intersection of the keyword “music” with the keyword descriptors “blood pressure” and “neurophysiology”. Results: There were selected 11 articles, which indicated that music interferes in some aspects of physiological variables. Conclusion: Studies have indicated that music interferes on the control of blood pressure, heart and respiratory rate, through possible involvement of limbic brain areas which modulate hypothalamic-pituitary functions. Further studies are needed in order to identify the mechanisms by which this influence occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This randomized, placebo-controlled, double-blind pilot study evaluated the impact of repetitive transcranial magnetic stimulation (rTMS) on clinical, cognitive, and social performance in women suffering with postpartum depression. Methods: Fourteen patients were randomized to receive 20 sessions of sham rTMS or active 5 Hz rTMS over the left dorsolateral prefrontal cortex. Psychiatric clinical scales and a neuropsychological battery were applied at baseline (pretreatment), week 4 (end of treatment), and week 6 (follow-up, posttreatment week 2). Results: The active rTMS group showed significant improvement 2 weeks after the end of rTMS treatment (week 6) in Hamilton Depression Rating Scale (P = 0.020), Global Assessment Scale (P = 0.037), Clinical Global Impression (P = 0.047), and Social Adjustment Scale-Self Report-Work at Home (P = 0.020). Conclusion: This study suggests that rTMS has the potential to improve the clinical condition in postpartum depression, while producing marginal gains in social and cognitive function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus. Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI) scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure. Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES) was 4.16 +/- 1.02 mm (range: 2.56-5.27 mm). Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased, decreased or normal excitability to transcranial magnetic stimulation (TMS) has been reported in the motor (M1) and visual cortices of patients with migraine. Light deprivation (LD) has been reported to modulate M1 excitability in control subjects (CS). Still, effects of LD on M1 excitability compared to exposure to environmental light exposure (EL) had not been previously described in patients with migraine (MP). To further our knowledge about differences between CS and MP, regarding M1 excitability and effects of LD on M1 excitability, we opted for a novel approach by extending measurement conditions. We measured motor thresholds (MTs) to TMS, short-interval intracortical inhibition, and ratios between motor-evoked potential amplitudes and supramaximal M responses in MP and CS on two different days, before and after LD or EL. Motor thresholds significantly increased in MP in LD and EL sessions, and remained stable in CS. There were no significant between-group differences in other measures of TMS. Short-term variation of MTs was greater in MP compared to CS. Fluctuation in excitability over hours or days in MP is an issue that, until now, has been relatively neglected. The results presented here will help to reconcile conflicting observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The caudomedial nidopallium (NCM) is a telencephalic area involved in auditory processing and memorization in songbirds, but the synaptic mechanisms associated with auditory processing in NCM are largely unknown. To identify potential changes in synaptic transmission induced by auditory stimulation in NCM, we used a slice preparation for path-clamp recordings of synaptic currents in the NCM of adult zebra finches (Taenopygia guttata) sacrificed after sound isolation followed by exposure to conspecific song or silence. Although post-synaptic GABAergic and glutamatergic currents in the NCM of control and song-exposed birds did not present any differences regarding their frequency, amplitude and duration after song exposure, we observed a higher probability of generation of bursting glutamatergic currents after blockade of GABAergic transmission in song-exposed birds as compared to controls. Both song-exposed males and females presented an increase in the probability of the expression of bursting glutamatergic currents, however bursting was more commonly seen in males where they appeared even without blocking GABAergic transmission. Our data show that song exposure changes the excitability of the glutamatergic neuronal network, increasing the probability of the generation of bursts of glutamatergic currents, but does not affect basic parameters of glutamatergic and GABAergic synaptic currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.