996 resultados para Cyber learning
Resumo:
Professional coaching is a rapidly expanding field with interdisciplinary roots and broad application. However, despite abundant prescriptive literature, research into the process of coaching, and especially life coaching, is minimal. Similarly, although learning is inherently recognised in the process of coaching, and coaching is increasingly being recognised as a means of enhancing teaching and learning, the process of learning in coaching is little understood, and learning theory makes up only a small part of the evidence-based coaching literature. In this grounded theory study of life coaches and their clients, the process of learning in life coaching across a range of coaching models is examined and explained. The findings demonstrate how learning in life coaching emerged as a process of discovering, applying and integrating self-knowledge, which culminated in the development of self. This process occurred through eight key coaching processes shared between coaches and clients and combined a multitude of learning theory.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.