482 resultados para Analytes
Resumo:
The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co. Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 mu g L-1 of Mn. Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L-1). After retrieval, the DGT units were disassembled and the P81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 x 10(-6) cm(2) s(-1). The metal retention and phosphate group homogeneities on the P81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 mu m dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 mu g L-1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 mu g L-1). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The combination of solid-phase microextraction (SPME) with comprehensive two-dimensional gas chromatography is evaluated here for fatty acid (FA) profiling of the glycerophospholipid fraction from human buccal mucosal cells. A base-catalyzed derivatization reaction selective for polar lipids such as glycerophospholipid was adopted. SPME is compared to a miniaturized liquidliquid extraction procedure for the isolation of FA methyl esters produced in the derivatization step. The limits of detection and limits of quantitation were calculated for each sample preparation method. Because of its lower values of limits of detection and quantitation, SPME was adopted. The extracted analytes were separated, detected, and quantified by comprehensive two-dimensional gas chromatography with flame ionization detection (FID). The combination of SPME and comprehensive two-dimensional gas chromatography with FID, using a selective derivatization reaction in the preliminary steps, proved to be a simple and fast procedure for FA profiling, and was successfully applied to the analysis of adult human buccal mucosal cells.
Resumo:
In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0 min at a flow-rate of 1.5 mL min(-1) into a Phenomenex Gemini (R) C18, 5 mu m analytical column (150 x 4.6 mm id.). The calibration curve was linear over the range from 0.2 to 200 ng mL(-1) for dextromethorphan and doxylamine and 0.05 to 10 ng mL(-1) for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5 mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Ayahuasca is a psychoactive plant beverage originally used by indigenous people throughout the Amazon Basin, long before its modern use by syncretic religious groups established in Brazil, the USA and European countries. The objective of this study was to develop a method for quantification of dimethyltryptamine and beta-carbolines in human plasma samples. Results: The analytes were extracted by means of C18 cartridges and injected into LC-MS/MS, operated in positive ion mode and multiple reaction monitoring. The LOQs obtained for all analytes were below 0.5 ng/ml. By using the weighted least squares linear regression, the accuracy of the analytical method was improved at the lower end of the calibration curve (from 0.5 to 100 ng/ml; r(2)> 0.98). Conclusion: The method proved to be simple, rapid and useful to estimate administered doses for further pharmacological and toxicological investigations of ayahuasca exposure.
Resumo:
A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for determination of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in human plasma has been developed, validated, and further applied to pharmacokinetic study in pregnant women with gestational diabetes mellitus (GDM) subjected to epidural anesthesia. Important factors in the optimization of in-tube SPME performance are discussed, including the draw/eject sample volume, draw/eject cycle number, draw/eject flow rate, sample pH, and influence of plasma proteins. The limits of quantification of the in-tube SPME/LC method were 50 ng/mL for both metabolite and lidocaine. The interday and intraday precision had coefficients of variation lower than 8%, and accuracy ranged from 95 to 117%. The response of the in-tube SPME/LC method for analytes was linear over a dynamic range from 50 to 5000 ng/mL, with correlation coefficients higher than 0.9976. The developed in-tube SPME/LC method was successfully used to analyze lidocaine and its metabolite in plasma samples from pregnant women with GDM subjected to epidural anesthesia for pharmacokinetic study.
Resumo:
A high-performance liquid chromatographic method using polar organic mode was developed to analyze albendazole (ABZ), albendazole sulfone (ABZSO(2)) and the chiral and active metabolite albendazole sulfoxide (ABZSOX, ricobendazole) that was further applied in stereoselective fungal biotransformation studies. The chromatographic separation was performed on a Chiralpak AS column using acetonitrile:ethanol (97:3, v/v) plus 0.2% triethylamine and 0.2% acetic acid as the mobile phase at a flow rate of 0.5 mL min(-1). The present study employed hollow fiber liquid-phase microextraction as sample preparation. The method showed to be linear over the concentration range of 25-5000 ng mL(-1) for each ABZSOX enantiomer, 200-10,000 ng mL(-1) for ABZ and 50-1000 ng mL(-1) for ABZSO(2) metabolite with correlation coefficient (r)> 0.9934. The mean recoveries for ABZ, rac-ABZSOX and ABZSO(2) were, respectively, 9%, 33% and 20% with relative standard deviation below 10%. Within-day and between-day precision and accuracy assays for these analytes were studied at three concentration levels and were lower than 15%. This study opens the door regarding the possibility of using fungi in obtaining of the active metabolite ricobendazole. Nigrospora sphaerica (Sacc.) E. W. Mason (5567), Pestalotiopsis foedans (VR8), Papulaspora immersa Hotson (SS13) and Mucor rouxii were able to stereoselectively metabolize ABZ into its chiral metabolite. Among them, the fungus Mucor rouxii was the most efficient in the production of (+)-ABZSOX. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions. Received 17 February 2012, accepted 27 March 2012, first published online 2 May 2012
Resumo:
A fast and sensitive method for the simultaneous determination of Sudan dyes (I, II, III, and IV) in food samples was developed for the first time using partial filling micellar electrokinectic chromatography-mass spectrometry (MEKC-MS). The use of MEKC was essential to achieve the separation of these neutral analytes, while the partial filling technique was necessary to avoid the contamination of the ion source with non-volatile micelles. MEKC separation and MS detection conditions were optimized in order to achieve a fast, efficient, and sensitive separation of the four dyes. Filling 25% of the capillary with an MEKC solution containing 40 mM ammonium bicarbonate, 25 mM SDS, and 32.5% (v/v) acetonitrile, a baseline separation of the four azo-dyes was obtained in 10 min. Tandem MS was investigated in order to improve the sensitivity and selectivity of the analysis. Limits of detection (LOD) values 5, 8, 15, and 29 times better were obtained for Sudan III, I, II, and IV, respectively, using partial filling MEKC-MS/MS instead of partial filling MEKC-MS. Under optimized conditions, LOD from 0.05 to 0.2 mu g/mL were obtained. The suitability of the developed method was demonstrated through the fast and sensitive determination of Sudan I, II, III, and IV in spiked chilli powder samples. This determination could not be achieved by MEKC-UV due to the existence of several interfering compounds from the matrix.
Resumo:
Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.
Resumo:
In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guacu River, SP). The electrochemical techniques were applied to 1.0 mol L-1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mu mol L-1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained -0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 x 10(-3), 1.07 x 10(-2) and 2.95 x 10(-2) A mol(-1) L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 x 10(-3), 1.06 x 10(-2) and 3.35 x 10(-2) A mol(-1) L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e., as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mu mol L-1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of detection limits obtained with the other techniques studied.
Resumo:
Several studies on polythiophene gas sensors, based mainly on electrochemical and gravimetric principles can be found in the literature. However, other principles of gas detection, such as optical and thermal, are still little studied. Optical sensing is suitable for remote detection and offers great versatility at low cost. Here,we report on the use of thin films of seven polythiophene derivatives as active layer in optical sensors for the detection of six volatile organic compounds (n-hexane, toluene, tetrahydrofuran, chloroform, dichloromethane and methanol) and water vapor, in concentration range of 500-30,000 ppm. The results showed that it is possible to use different polythiophene derivatives to differentiate VOCs by optical sensing. Differentiation can be performed based on the presence or not of response to an analyte and the sensitivity value of the sensors for the analytes. Another important feature is the lack of the effect of humidity on the response of most films, which could be a major drawback in the application of these sensors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow-fiber liquid-phase microextraction in the three-phase mode. Hollow-fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 mu L of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 mu g/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 mu g/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.