999 resultados para [SO4]2-


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drilling during Legs 137 and 140 of the Ocean Drilling Program deepened Hole 504B, the only hole to penetrate through the volcanic section and into the underlying hydrothermally altered sheeted dike complex, by 438.1 m to a total depth of 2000.4 meters below seafloor. This paper presents the secondary mineralogy, bulk-rock sulfur contents, and stable isotopic (O, S) compositions, plus oxygen isotopic compositions of secondary minerals from the lower sheeted dike complex drilled during Legs 137 and 140. Various evidence indicates higher temperatures of hydrothermal alteration in the lower dikes than in the upper dikes, including: the local presence of secondary clinopyroxene in the lower dikes; secondary anorthite and hornblende in the lower dikes vs. mainly actinolite and albite-oligoclase in the upper dikes; generally increasing Al and Ti contents of amphibole downward in the dike section; and greater 18O depletions of the lower dikes (d18O = 3.6-5.0 per mil) compared with the upper dikes. Early high-temperature alteration stages (T = 350°-500°C) resulted in 18O depletions and losses of metals (Cu, Zn) and sulfur from the rocks. Local incorporation of reduced seawater sulfate led to elevated d34S values of sulfide in the rocks (up to 2.5 per mil). Quartz + epidote formed in crosscutting veins at temperatures of 310°-320°C from more evolved fluids (d18O = 1 per mil). Late-stage lower-temperature (~250°C) reactions producing albite, prehnite, and zeolites in the rocks caused slight 18O enrichments, but these were insufficient to offset the 18O depletions caused by earlier higher-temperature reactions. Addition of anhydrite to the rocks during seawater recharge led to increased S contents of rocks that had previously lost S during axial hydrothermal alteration, and to further increases in d34S values of total S in the rocks (up to 12 per mil). Despite the evidence for seawater recharge to near the base of the sheeted dike complex, the paucity of late zeolites in the lower dikes suggests that late-stage, off-axis circulation was mainly restricted to the volcanics and shallowest dikes, or to localized high-permeability zones (faults) at depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concentration changes in pore waters of dissolved calcium, magnesium, sulfate, strontium, and silica and of alkalinity are controlled by diagenetic reactions occurring within the biogenic sediments of DSDP Sites 572, 573, and 574. Downcore increases in dissolved Sr2 + indicate recrystallization of calcite, and increases in dissolved SiO2 reflect dissolution of amorphous silica. Minor gradients in dissolved Ca(2+) and Mg(2+) suggest little if any influence from reactions involving volcanic sediments or basalt. Differences in interstitial water profiles showing the downhole trends of these chemical species mark variations in carbonate and silica diagenesis, sediment compositions, and sedimentation rate histories among the sites. The location and extent of carbonate diagenesis in these sediments are determined from Sr/Ca distributions between the interstitial waters and the bulk carbonate samples. Pore water strontium increases in the upper 100 to 250 m of sediment are assumed to reflect diffusion from underlying zones where calcite recrystallization has occurred. On the basis of calculations of dissolved strontium production and comparisons between observed and calculated "equilibrium" Sr/Ca ratios of the solids, approximately 30 to 50% of the carbonate has recrystallized in these deeper intervals. These estimates agree with the observed amounts of chalk at these sites. Variations in Sr/Ca ratios of these carbonates reflect differences in calcareous microfossil content, in diagenetic history, and, possibly, in changes in seawater Sr/Ca with time. Samples of porcelanite recovered below 300 m at Site 572 suggest formation at temperatures 20 to 30° C greater than ones estimated assuming oceanic geothermal gradients from sedimentary sections similar to those recovered on Leg 85. The higher temperatures may partially account for higher Sr/Ca ratios determined for recrystallized carbonates from this site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial waters recovered during Leg 38 show large changes in major ion composition and also in oxygen isotope composition. Increases in Ca[++] and Sr[++] and decreases in K[+], Mg[++], and O18/O16 are interpreted in terms of extensive diagenesis of terrigenous, volcanic, or basaltic igneous materials in the sediments and underlying basalts. Slight, but well-established increases in chlorinity with depth indicate that these postulated weathering reactions involve uptake of water to a measurable extent. Interstitial waters from sites drilled on the Inner Voring Plateau suggest the infusion of fresh waters by aquifers from the mainland of Norway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular and isotopic measurements of gas and water obtained from a gas hydrate at Site 570, DSDP Leg 84, are reported. The hydrate appeared to be Structure I and was composed of a solid framework of water molecules enclosing methane and small amounts of ethane and carbon dioxide. Carbon isotopic values for the hydrate-bound methane, ethane, and carbon dioxide were -41 to about -44, -27, and -2.9 per mil, respectively. The d13C-C1 values are consistent with void gas values that were determined to have a biogenic source. A significant thermogenic source was discounted because of high C1/C2 ratios and because the d13C-CO2 values in these sections were also anomalously heavy (or more positive) isotopically, suggesting that the methane was formed biogenically by reduction of heavy CO2 . The isotopically heavy hydrate d13C-C2 is also similar to void gas isotopic compositions and is either a result of low-temperature diagenesis producing heavy C2 in these immature sediment sections or upward migration of deeper thermogenic gas. The salinity of the hydrate water was 2.6 per mil with dDH2O and d18OH2O values of +1 and +2.2 per mil, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial water analyses of samples collected at Sites 544-547 of DSDP Leg 79 are presented. In Site 547 chloride concentrations increase to almost 80% of the halite saturation values. Gypsum occurrences in the sediments immediately overlying the halite deposit can be explained in terms of migration of Ca**2+ and SO2**2- from the underlying evaporites. At shallower depths sulfate concentrations decrease rapidly as a result of sulfate reduction processes. The same processes lead to the removal of calcium in the form of calcium carbonate. At Site 547, the chloride concentration depth profile suggests a maximum of dissolved chloride which may be the result of advective flow from nearby (abput 6 km) evaporite salt diapirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr**-1 to <1 cm yr**-1 and the sulfate/methane transition (SMT) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6-9.3 mol m**-2 yr**-1). Depth-integrated rates of bioirrigation increased from 120 cm yr**-1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr**-1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical environment and fuel upward sulfide flux via AOM. Furthermore, due to the introduction of oxygenated bottom water into the sediment via bioirrigation, the depth of the sulfide sink gradually deepens towards outer habitats. We therefore suggest that - in addition to the oxygen levels in the water column, which determine whether macrofaunal communities can develop or not - it is the depth of the SMT and thus of sulfide production that determines which chemosynthetic communities are able to exploit the sulfide at depth. We hypothesize that large vesicomyid clams, by efficiently expanding the sulfate zone down into the sediment, could cut off smaller or less mobile organisms, as e.g. small clams and sulfur bacteria, from the sulfide source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial waters in sediments below 400 (Site 798) and 435 meters below seafloor (Site 799) have chloride concentrations of 516-527 and 501-515 mM, respectively, lower than the 540 mM of the modern-day Japan Sea. The chemical composition of interstitial waters, bulk sediments, clay-size sediment fraction, and carbonate nodules from Oki Ridge (Site 798) and Kita-Yamato Trough (Site 799), Japan Sea, reflect in-situ diagenetic processes superimposed on geochemical signals that may indicate freshening of Miocene local marginal basin waters. Interstitial waters at both sites exhibit changes in chemical composition which coincide with the occurrence of low-porosity and high-bulk density layers composed of dolomite and opal-CT, which impede diffusive communication with the overlying interstitial waters. Based on interstitial water stable isotope evidence and mass-balance calculations of chloride dilution, diagenetic reactions that involve the release of structural bound water from opal-A and/or clay minerals contribute to the observed geochemical signals, but cannot account for all the measured chloride dilution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial water data obtained during Leg 60 show complex gradients at Site 453 in a sediment pond on the west side of the Mariana Trough. Concentrations of Ca, Mg, Sr, as well as of K and Li, suggest that slightly altered sea water penetrates below the sediments, most likely through brecciated igneous and metamorphic rocks, mainly gabbros, lying at the base of the pond. Interstitial water concentration gradients suggest that reactions involving igneous matter lead to increases in calcium and strontium in the pore fluids and to decreases in magnesium. Upward advection of water through the sediments does not appear to occur, so that the advected sea water most likely penetrates deeper into the breccias, perhaps leading to further hydrothermal activity elsewhere in this area. Interstitial water gradients at Sites 458 (conservative) and 459 suggest that reactions in the sediments and underlying basalts are responsible for increases in dissolved calcium and decreases in magnesium and potassium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the most extreme habitats on Earth, dark, deep, anoxic brines host unique microbial ecosystems that remain largely unexplored. As the terminal step of anaerobic degradation of organic matter, methanogenesis is a potentially significant but poorly constrained process in deep-sea hypersaline environments. We combined biogeochemical and phylogenetic analyses as well as incubation experiments to unravel the origin of methane in hypersaline sediments of Orca Basin in the northern Gulf of Mexico. Substantial concentrations of methane (up to 3.4 mM) coexisted with high concentrations of sulfate (16-43 mM) in two sediment cores retrieved from the northern and southern parts of Orca Basin. The strong depletion of 13C in methane (-77 to -89 per mill) pointed towards a biological source. While low concentrations of competitive substrates limited the significance of hydrogenotrophic and acetoclastic methanogenesis, the presence of non-competitive methylated substrates (methanol, trimethylamine, dimethyl sulfide, dimethylsulfoniopropionate) supported the potential for methane generation through methylotrophic methanogenesis. Thermodynamic calculations demonstrated that hydrogenotrophic and acetoclastic methanogenesis were unlikely to occur under in situ conditions, while methylotrophic methanogenesis from a variety of substrates was highly favorable. Likewise, carbon isotope relationships between methylated substrates and methane supported methylotrophic methanogenesis as the major source of methane. Stable isotope tracer and radiotracer experiments with 13C bicarbonate, acetate and methanol as well as 14C-labeled methylamine indicated that methylotrophic methanogenesis was the predominant methanogenic pathway. Based on 16S rRNA gene sequences, halophilic methylotrophic methanogens related to the genus Methanohalophilus dominated the benthic archaeal community in the northern basin but also occurred in the southern basin. High abundances of methanogen lipid biomarkers such as intact polar and polyunsaturated hydroxyarchaeols were detected in sediments from the northern basin, with lower abundances in the southern basin. Strong 13C-depletion of saturated and monounsaturated hydroxyarchaeol were consistent with methylotrophic methanogenesis as the major methanogenic pathway. Collectively, the availability of methylated substrates, thermodynamic calculations, experimentally determined methanogenic activity as well as lipid and gene biomarkers strongly suggested methylotrophic methanogenesis as predominant pathway of methane formation in the presence of sulfate in Orca Basin sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate (SO42-) is an important anion regulating many metabolic and cellular processes. Maintenance Of SO42- homeostasis occurs in the renal proximal tubule via membrane transport proteins. Two SO42- transporters that have been characterized and implicated in regulating serum SO42- levels are: NaSi- 1, a Na+-SO4 (2-) cotransporter located at the brush border membrane and Sat-1, a SO4 (2-) -anion exchanger located on the basolateral membranes of proximal tubular cells. Unlike Sat-1, for which very few studies have looked at regulation of its expression, NaSi- 1 has been shown to be regulated by various hormones and dietary conditions in vivo. To study this further, NaSj- I (SLC13A1) and Sat- I (SLC26A1) gene structures were determined and recent studies have characterized their respective gene promoters. This review presents the current understanding of the transcriptional regulation of NaSj- I and Sat- 1, and describes possible pathogenetic implications which arise as a consequence of altered SO(4)(2-)homeostasis. (c) 2005 Elsevier Ltd. All rights reserved.