808 resultados para vilsmeier reagent
Resumo:
In this study we report on the synthesis, kinetic characterization and application of a novel biotinylated and active-site-directed inactivator of cathepsin B. Thus the peptidyliazomethane biotinyl-Phe-Ala-diazomethane has been synthesized by a combination of solid-phase and solution methodologies and has been shown to be a very efficient inactivator of bovine and human cathepsin B. The respective apparent second-order rate constants (k0bs./[I]) for the inactivation of the human and bovine enzymes by this reagent, namely approximately 5.4 x 10(4) M-1 and approximately 7.8 x 10(4) M-1, compare very favourably with those values determined for the urethane-protected analogue benzloxycarbonyl-Phe-Ala-chloromethane first described by Green & Shaw [(1981) J.Biol. Chem. 256, 1923-1928], thus demonstrating that the presence of the biotin moiety at the P3 position is compatible with inhibitor effectiveness. The utilization of this reagent for the detection of cathepsin B in electrophoretic gels, using Western blotting and in combination with a streptavidin/alkaline phosphatase detection system, is also demonstrated. Given that the peptidydiazomethanes exhibit a pronounced reactivity towards cysteine proteinases, we feel that the present label may well constitute the archetypal example of a wide range of reagents for the selective labelling of this class of proteinase, even in a complex biological milieu containing additional classes of proteinases.
Resumo:
The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.
Resumo:
Many zeranol immunoassay test kits cross-react with toxins formed by naturally occurring Fusarium spp. fungi, leading to false-positive screening results. This paper describes the evaluation and application of recently published, dry reagent time-resolved fluoroimmunoassays (TR-FIA) for zeranol and the toxin alpha-zearalenol. A ring test of bovine urine fortified with zeranol and/or alpha-zearalenol in four European Union National Reference Laboratories demonstrated that the TR-FIA tests were accurate and robust. The alpha-zearalenol TR-FIA satisfactorily quantified alpha-zearalenol in urine fortified at 10-30 ng ml(-1) . The specificity-enhanced zeranol TR-FIA accurately quantified zeranol in the range 2-5 ng ml(-1) and gave no false-positive results in blank urine, even in the presence of 30 ng ml(-1) alpha-zearalenol. Zeranol TR-FIA specificity was demonstrated further by analysing incurred zeranol-free urine samples containing natural Fusarium spp. toxins. The TR-FIA yielded no false-positive results in the presence of up to 22 ng ml(-1) toxins. The performance of four commercially available zeranol immunoassay test kits was more variable. Three kits produced many false-positive results. One kit produced only one potential false-positive using a protocol that was longer than that of the TR-FIA. These TR-FIAs will be valuable tools to develop inspection criteria to distinguish illegal zeranol abuse from contamination arising from in vivo metabolism of Fusarium spp. toxins.
Resumo:
Reagent pre-storage in a microfluidic chip can enhance operator convenience, simplify the system design, reduce the cost of storage and shipment, and avoid the risk of cross-contamination. Although dry reagents have long been used in lateral flow immunoassays, they have rarely been used for nucleic acid-based point-of-care (POC) assays due to the lack of reliable techniques to dehydrate and store fragile molecules involved in the reaction. In this study, we describe a simple and efficient method for prolonged on-chip storage of PCR reagents. The method is based on gelification of all reagents required for PCR as a ready-to-use product. The approach was successfully implemented in a lab-on-a-foil system, and the gelification process was automated for mass production. Integration of reagents on-chip by gelification greatly facilitated the development of easy-to-use lab-on-a-chip (LOC) devices for fast and cost-effective POC analysis.
Resumo:
A series of phosphorodiamidite reagents have been readily prepared using bis{(trifluoromethyl)sulfonyl}imide based ionic liquids and compared with their syntheses in conventional organic solvents. This method demonstrates a versatile procedure that allows access to both known and novel phosphorodiamidite reagents, whilst addressing issues such as moisture sensitivity and product selectivity present in current molecular based protocols. This method negates the need for reagent purification, whilst allowing for the reactions to be conducted at high concentrations. © 2012 The Royal Society of Chemistry.
Resumo:
Electrokinetic process is a potential in situ soil remediation process which transports the contaminants via electromigration and electroosmosis. For organic compounds contaminated soil, Fenton’s reagent is utilized as a flushing agent in electrokinetic process (Electrokinetic-Fenton) so that removal of organic contaminants could be achieved by in situ oxidation/destruction. However, this process is not applied widely in industries as the stability issue for Fenton’s reagent is the main drawback. The aim of this mini review is to summarize the developments of Electrokinetic-Fenton process on enhancing the stability of Fenton’s reagent and process efficiency in past decades. Generally, the enhancements are conducted via four paths: (1) chemical stabilization to delay H2O2 decomposition, (2) increase of oxidant availability by monitoring injection method for Fenton’s reagent, (3) electrodes operation and iron catalysts and (4) operating conditions such as voltage gradient, electrolytes and H2O2 concentration. In addition, the types of soils and contaminants are also showing significant effect as the soil with low acid buffering capacity, adequate iron concentration, low organic matter content and low aromatic ring organic contaminants generally gives better efficiency.
Resumo:
Gene therapy has the potential to provide safe and targeted therapies for a variety of diseases. A range of intracellular gene delivery vehicles have been proposed for this purpose. Non-viral vectors are a particularly attractive option and among them cationic peptides have emerged as promising candidates. For the pharmaceutical formulation and application to clinical studies it is necessary to quantify the amount of pDNA condensed with the delivery system. There is a severe deficiency in this area, thus far no methods have been reported specifically for pDNA condensed with cationic peptide to form nanoparticles. The current study seeks to address this and describes the evaluation of a range of disruption agents to extract DNA from nanoparticles formed by condensation with cationic fusogenic peptides RALA and KALA. Only proteinase K exhibited efficient and reproducible results and compatibility with the PicoGreen reagent based quantification assay. Thus we report for the first time a simple and reliable method that can quantify the pDNA content in pDNA cationic peptide nanoparticles.
Resumo:
4-Amino-5-hexynoic acid is efficiently synthesised in eight steps (overall yield 10%) from commercially available (S)-glutamic acid. The key step was conversion of an aldehyde to an acetylene using diethylmethydiazophosphonate.
Resumo:
Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristic properties are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150°C. However, the copper was separately scattered after heating at 1000°C. The forming mechanisms of copper coating will be discussed in detail. By choosing proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no binding problem.
Resumo:
Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristics are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150°C. However, the copper was separately scattered in and under the surface rust after heating at 1000°C. The forming mechanisms of copper coating are discussed in detail. By choosing a proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no bonding problem.
Resumo:
The use of biomass as a source of fuel is on the sharp increase. In parallel with this expansion, new chemical processes and technologies are required to improve efficiency, sustainability, and profitability.
Biocatalytic and chemocatalytic methods can be combined to affect the conversion of bio-alcohols, and convert them to valuable chemical targets in an atom efficient and environmentally benign manor. Fermentation offers a useful first step in biomass conversion, as whole cell biocatalysts can provide sustained activity when fed with crude biomass. Coupling this with homogeneous and/or heterogeneous catalysis enables the preparation of a diverse product range. The transition between biocatalytic and chemocatalytic steps can be assisted by utilising ionic liquids.
Ionic liquids have potential roles in biorefineries that generate alcohols; as an extractant, reaction medium, and catalytic reagent. Underpinning the potential of ionic liquids in this area is: 1. the ability of ionic liquids to solubilize polyols and alcohols; 2. the facility to functionalise ionic liquids and tune properties; 3. the low volatility of ionic liquids.
The FP7 project GRAIL will be highlighted; this project focusses on the utilisation of glycerol formed as a by-product in biodiesel synthesis.
Resumo:
We designed a straightforward biotinylated probe using the N-terminal substrate-like region of the inhibitory site of human cystatin C as a scaffold, linked to the thiol-specific reagent diazomethylketone group as a covalent warhead (i.e. Biot-(PEG)2-Ahx-LeuValGly-DMK). The irreversible activity-based probe bound readily to cysteine cathepsins B, L, S and K. Moreover affinity labeling is sensitive since active cathepsins were detected in the nM range using an ExtrAvidin®-peroxidase conjugate for disclosure. Biot-(PEG)2-Ahx-LeuValGly-DMK allowed a slightly more pronounced labeling for cathepsin S with a compelling second-order rate constant for association (kass = 2,320,000 M−1 s−1). Labeling of the active site is dose-dependent as observed using 6-cyclohexylamine-4-piperazinyl-1,3,5-triazine-2-carbonitrile, as competitive inhibitor of cathepsins. Finally we showed that Biot-(PEG)2-Ahx-LeuValGly-DMK may be a simple and convenient tool to label secreted and intracellular active cathepsins using a myelomonocytic cell line (THP-1 cells) as model.
Resumo:
Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.
Resumo:
Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5-3' exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R(2) > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC-MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation.
Resumo:
Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles< 100nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine® 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor.