998 resultados para semiconducting materials
Resumo:
Oversized materials is the digitized contents of one box (OS1) that consists of correspondence and an address from Box 2, Folders 12, 13 and 17.
Resumo:
The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
Digital image
Resumo:
Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one of the Australian States) to explore the relationships between the emancipatory/social justice expectations presented in the rubric of and introduction to the official syllabus document, and the language details of learning outcomes that indicate how the expectations might be satisfied. Given the complexity and multilevel pathways of message systems/ideologies we question the efficacy of such documents oriented around social justice principles to genuinely deliver more radical agendas which promote social change and encourage a preparedness to engage in social action leading to a betterment of society.
Resumo:
Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.
Resumo:
Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooc tylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.
Resumo:
Supramolecular ordering of organic semiconductors is the key factor defining their electrical characteristics. Yet, it is extremely difficult to control, particularly at the interface with metal and dielectric surfaces in semiconducting devices. We have explored the growth of n-type semiconducting films based on hydrogen-bonded monoalkylnaphthalenediimide (NDI-R) from solution and through vapor deposition on both conductive and insulating surfaces. We combined scanning tunneling and atomic force microscopies with X-ray diffraction analysis to characterize, at the submolecular level, the evolution of the NDI-R molecular packing in going from monolayers to thin films. On a conducting (graphite) surface, the first monolayer of NDI-R molecules adsorbs in a flat-lying (face-on) geometry, whereas in subsequent layers the molecules pack edge-on in islands (Stranski–Krastanov-like growth). On SiO2, the NDI-R molecules form into islands comprising edge-on packed molecules (Volmer–Weber mode). Under all the explored conditions, self-complementary H bonding of the imide groups dictates the molecular assembly. The measured electron mobility of the resulting films is similar to that of dialkylated NDI molecules without H bonding. The work emphasizes the importance of H bonding interactions for controlling the ordering of organic semiconductors, and demonstrates a connection between on-surface self-assembly and the structural parameters of thin films used in electronic devices.
Resumo:
Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.
Resumo:
The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.
Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials
Resumo:
We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1-xCdxTe and InxGa1-xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.