531 resultados para rhodium phthalocyanine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ruthenium, rhodium, and iridium piano stool complexes of the pentafluorophenyl-substituted diphosphine (C6F5)2PCH2P(C6F5)2 (2) have been prepared and structurally characterized by single-crystal X-ray diffraction. The Cp-P tethered complex [{(C5Me4CH2C6F4(C6F5)CH2P(C6F5)2}RhCl2] (9), in which only one phosphorus is coordinated to the rhodium, was prepared by thermolysis of a slurry of [Cp*RhCl(-Cl)]2 and 2 and was structurally characterized by single-crystal X-ray diffraction. The tethering occurs by intramolecular dehydrofluorinative coupling of the pentamethylcyclopentadienyl ligand and P,P-coordinated 2. The geometric changes that occur on tethering force dissociation of one of the phosphorus atoms. The effects of introducing phosphine ligands to the coordination sphere of piano stool hydrogen transfer catalysts have been studied. The complexes of fluorinated phosphine complexes are found to transfer hydrogen at rates that compare favorably with leading catalysts, particularly when the phosphine and cyclopentadienyl functionalities are tethered. The highly chelating Cp-PP complex [(C5Me4CH2-2-C5F3N-4-PPhCH2CH2PPh2)RhCl]BF4 (1) was found to outperform all other complexes tested. The mechanism of hydrogen transfer catalyzed by piano stool phosphine complexes is discussed with reference to the trends in activity observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Piano stool complexes of rhodium and iridium activated by fluorinated and non-fluorinated N-heterocyclic carbene (NHC) ligands were shown to be catalysts for racemization in the one-pot chemoenzymic dynamic kinetic resolution (DKR) of secondary alcohols. Excellent conversions and good enantioselectivities were observed for alkyl aryl and dialkyl secondary alcohols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several novel phosphoramidites have been prepared by reaction of the primary amines para-vinylaniline, ortho-anisidine, 2-methoxyphenyl(4-vinylbenzyl)amine, 8-aminoquinoline and 3-vinyl-8-aminoquinoline with (S)-1,1'-bi-2-naphthylchlorophosphite, in the presence of base. Rhodium(l) complexes of these phosphoramidites catalyse the asymmetric hydrogenation of dimethylitaconate and dehydroamino acids and esters giving ee values up to 95%. Soluble non-cross linked polymers of the para-vinylaniline and 3-vinyl-8-aminoquinoline-based phosphoramidites have been prepared by free radical co-polymerisation with styrene in the presence of AIBN as initiator. The corresponding [Rh(COD)](+) complexes serve as recyclable catalysts for the asymmetric hydrogenation dimethylitaconate and dehydroamino acids and esters to give ee values up to 80%. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct systems for the rhodium-catalyzed enantioselective desymmetrization of meso-cyclic anhydrides have been developed. Each system has been optimized and are compatible with the use of in situ prepared organozinc reagents. Rhodium/PHOX species efficiently catalyze the addition of alkyl nucleophiles to glutaric anhydrides, while a rhodium/phosphoramidite system is effective in the enantioselective arylation of succinic and glutaric anhydrides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydroformylation of 1-octene under continuous flow conditions is described. The system involves dissolving the catalyst, made in situ from [ Rh(acac)(CO)(2)] (acacH = 2,4- pentanedione) and [RMIM][TPPMS] ( RMIM = 1-propyl (Pr), 1-pentyl (Pn) or 1-octyl (O)-3-methyl imidazolium, TPPMS = Ph2P(3-C6H4SO3)), in a mixture of nonanal and 1-octene and passing the substrate, 1-octene, together with CO and H-2 through the system dissolved in supercritical CO2 (scCO(2)). [PrMIM][TPPMS] is poorly soluble in the medium so heavy rhodium leaching (as complexes not containing phosphine) occurs in the early part of the reaction. [PnMIM][ PPMS] affords good rates at relatively low catalyst loadings and relatively low overall pressure (125 bar) with rhodium losses <1 ppm, but the catalyst precipitates at higher catalyst loadings, leading to lower reaction rates. [OMIM][ TPPMS] is the most soluble ligand and promotes high reaction rates, although preliminary experiments suggested that rhodium leaching was high at 5-10 ppm. Optimisation aimed at balancing flows so that the level within the reactor remained constant involved a reactor set up based around a reactor fitted with a sight glass and sparging stirrer with the CO2 being fed by a cooled head HPLC pump, 1-octene by a standard HPLC pump and CO/H-2 through a mass flow controller. The pressure was controlled by a back pressure regulator. Using this set up, [OMIM][ TPPMS] as the ligand and a total pressure of 140 bar, it was possible to control the level within the reactor and obtain a turnover frequency of ca. 180 h(-1). Rhodium losses in the optimised system were 100 ppb. Transport studies showed that 1-octene is preferentially transported over the aldehydes at all pressures, although the difference in mol fraction in the mobile phase was less at lower pressures. Nonanal in the mobile phase suppresses the extraction of 1-octene to some extent, so it is better to operate at high conversion and low pressure to optimise the extraction of the products relative to the substrate. CO and H2 in the mobile phase also suppress the extraction effciency by as much as 80%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A different approach to the synthesis of dipeptides is described based on the formation of the (NHCHRCONH)-C-1-(CHRCO)-C-2 bond by carbenoid N-H insertion, rather than the formation of the peptide bond itself. Thus decomposition of triethyl diazophosphonoacetate catalysed by rhodium(Ii) acetate in the presence of N-protected amino acid amides 8 gives the phosphonates 9, Subsequent Wadsworth-Emmons reaction of 9 with aldehydes in the presence of DBU gives dehydro dipeptides 10. The reaction has been extended to a simple two-step procedure, without the isolation of the intermediate phosphonate. for conversion of a range of amino acid amides 11 into dehydro dipepides 12 and to an N-methylamide 11h, and for conversion of a dipeptide: to tripeptide (13-14). Direct conversion, by using methyl diazophenylacetate, of amino acid amides to phenylglycine-containing dipeptides 19 proceeds in good chemical yield, but with poor diastereoselectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhodium(II) acetate catalyzed reaction of tri-Et diazophosphonoacetate with amides, carbamates or ureas gives a range of N-acyl phosphonylglycine derivs. by N-H insertion reaction of the intermediate rhodium carbenoid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enantiopure arene cis-tetrahydrodiols of bromobenzene and iodobenzene have been obtained in good yields, from chemoselective hydrogenation (rhodium-graphite) of the corresponding cis-dihydrodiol metabolites. Palladium-catalysed substitution of the halogen, by hydrogen, boron, nitrogen and phosphorus nucleophiles, in the acetonide derivatives, has yielded highly functionalised products for application in synthesis with potential as scaffolds for chiral ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemoenzymatic synthesis of a Lewis basic phosphine-phosphine oxide organocatalyst from a cis-dihydrodiol metabolite of bromobenzene proceeds via a palladium-catalysed carbon-phosphorus bond coupling and a novel room temperature Arbuzov [2,3]-sigmatropic rearrangement of an allylic diphenylphosphinite. Allylation of aromatic aldehydes were catalysed by the Lewis basic organocatalyst giving homoallylic alcohols in up to 57% ee. This compound also functioned as a ligand for rhodium-catalysed asymmetric hydrogenation of acetamidoacrylate giving reduction products with ee values of up to 84%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dry reforming is a promising reaction to utilise the greenhouse gases CO2 and CH4. Nickel-based catalysts are the most popular catalysts for the reaction, and the coke formation on the catalysts is the main obstacle to the commercialisation of dry reforming. In this study, the whole reaction network of dry reformation on both flat and stepped nickel catalysts (Ni(111) and Ni(211)) as well as nickel carbide (flat: Ni3C(001); stepped: Ni3C(111)) is investigated using density functional theory calculations. The overall reaction energy profiles in the free energy landscape are obtained, and kinetic analyses are utilised to evaluate the activity of the four surfaces. By careful examination of our results, we find the following regarding the activity: (i) flat surfaces are more active than stepped surfaces for the dry reforming and (ii) metallic nickel catalysts are more active than those of nickel carbide, and therefore, the phase transformation from nickel to nickel carbide will reduce the activity. With respect to the coke formation, the following is found: (i) the coke formation probability can be measured by the rate ratio of CH oxidation pathway to C oxidation pathway (r(CH)/r(C)) and the barrier of CO dissociation, (ii) on Ni(111), the coke is unlikely to form, and (iii) the coke formations on the stepped surfaces of both nickel and nickel carbide can readily occur. A deactivation scheme, using which experimental results can be rationalised, is proposed. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.