847 resultados para ponderomotive broadening
Resumo:
By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.
Resumo:
The magnetic field dependence of filling factors has been investigated on InP based In-0.53 Ga0.47As/In-0.52 Al-0.48 As quantum well samples with two occupied subbands by means of magnetotransport measurements at the temperature of 1.5 K in a magnetic field range of 0 to 13 T. Under the condiction that Laundau-level broadening is larger than the spin splitting of each subband, filling factors are even when the splitting energy of two subbands is an integer multiple of the cyclotron energy, i. e. Delta E-21 = khw(c). If the splitting energy of two subbands is half of an odd interger multiple of the cyclotron erergy, i. e. Delta E-21 = (2 k + 1) hw(c) /2, the filling factor is odd.
Resumo:
A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Determination of the tilt and twist angles of curved GaN layers by high-resolution x-ray diffraction
Resumo:
The full-width at half-maximum (FWHM) of an x-ray rocking curve (XRC) has been used as a parameter to determine the tilt and twist angles of GaN layers. Nevertheless, when the thickness of GaN epilayer reaches several microns, the peak broadening due to curvature becomes non-negligible. In this paper, using the (0 0 l), l = 2, 4, 6, XRC to minimize the effects of wafer curvature was studied systematically. Also the method to determine the tilt angle of a curved GaN layer was proposed while the Williamson-Hall plot was unsuitable. It was found that the (0 0 6) XRC-FWHM had a significant advantage for high-quality GaN layers with the radius curvature of r less than 3.5 m. Furthermore, an extrapolating method of gaining a reliable tilt angle has also been proposed, with which the calculated error can be improved by 10% for r < 2 m crystals compared with the (0 0 6) XRC-FWHM. In skew geometry, we have demonstrated that the twist angles deriving from the (2 0 4) XRC-FWHM are in accord with those from the grazing incidence in-plane diffraction (IP-GID) method for significantly curved samples.
Resumo:
Undoped Ga-Sb samples were investigated by positron lifetime spectroscopy (PAS) and the coincident Doppler broadening (CDB) technique. PAS measurement indicated that there were monovacancy-type defects in undoped Ga-Sb samples, which were identified to be predominantly Ca vacancy (V-Ga) related defects by combining the CDB measurements. After annealing of these samples at 520 C, positron shallow trapping have been observed and should be due to Ga-Sb defects. Undoped Ga-Sb is intrinsically p-type having a residual carrier density of 10(16)-10(17) cm(-3). And the Ga-Sb antisite defects are stable in the (0), (1-) and (2-) charge states and act as a double acceptor. Thus, we infer that Ga-Sb antisite defects are the acceptor contributing to the p-type conduction for undoped samples. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening.
Resumo:
Naphthalocyanine-sensitized multi-walled carbon nanotube (NaPc-MWNT) composites have been synthesized through the pi-stacking between naphthalocyanine (NaPc) and carbon nanotubes. The resultant nanocomposites were characterized with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and by UV - vis absorption and photocurrent spectra. The long-range ordering was observed in the NaPc - MWNT composites by using a TEM. The enhancement in the absorption intensity and the broadening of the absorption wavelength observed in the composite films, which were due to the attachment of NaPc on the MWNT surface, is discussed based on the measured UV - vis absorption spectra. Furthermore, the photoconductivity of the poly( 3-hexylthiophene)(PAT6) - NaPc - MWNT composite film was found to increase remarkably in the visible region and broaden towards the red regions. These new phenomena were ascribed to the larger donor/acceptor (D/A) interface and the formation of a biconsecutive D/A network structure, as discussed in consideration of the photoinduced charge transfer between PAT6 and NaPc - MWNT.
Resumo:
Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
A microcavity structure, containing self-assembled InGaAs quantum dots, is studied by angle-resolved photoluminescence (PL) spectroscopy. A doublet with the splitting energy of 0.5-1.5 nm appears when the detection angle is larger than 35degrees. This doublet is identified as mode splitting (not the Rabi splitting) by polarization measurements. We find that it is the considerable deviation of the cavity-mode frequency from the central frequency of the stop band that makes the TE and TM cavity modes split more discernibly. The inhomogeneous broadening of quantum dots gives the TE and TM cavity modes a chance to show up simultaneously in the PL spectra. (C) 2003 American Institute of Physics.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy and characterized by photoluminescence (PL). For both single- and multi-layer QDs, PL intensity of the first excited state is larger than that of the ground state at 15 K. Conversely, at room temperature (RT), PL intensity of the first excited state is smaller than that of the ground state. This result is explained by the phonon bottleneck effect. To the ground state, the PL intensities of the multi-layer QDs are larger than that of the single-layer QDs at 15 K, while the intensities are smaller than that of the single-layer QDs at RT. This is due to the defects in the multi-layer QD samples acting as the nonradiative recombination centers. The inter-diffusion of Ga and In atoms in the growth process of multi-layer QDs results in the PL blueshift of the ground state and broadening of the full-width at half-maximum (FWHM), which can be avoided by decreasing the spacers' growth temperature. At the spacers' growth temperature of 520degreesC, we have prepared the 5-layer QDs which emit near 1.3 mum with a FWHM of 31.7 meV at RT, and 27.9 meV at 77 K. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.
Resumo:
Positron-annihilation lifetime and positron-annihilation Doppler-broadening (PADB) spectroscopies have been employed to investigate the formation of vacancy-type compensation defects in n-type undoped liquid encapsulated Czochrolski grown InP, which undergoes conduction-type conversions under high temperature annealing. N-type InP becomes p-type semiconducting by short time annealing at 700 degreesC, and then turns into n-type again after further annealing but with a much higher resistivity. Long time annealing at 950 degreesC makes the material semi-insulating. Positron lifetime measurements show that the positron average lifetime tau(av) increases from 245 ps to a higher value of 247 ps for the first n-type to p-type conversion and decreases to 240 ps for the ensuing p-type to n-type conversion. The value of tau(av) increases slightly to 242 ps upon further annealing and attains a value of 250 ps under 90 h annealing at 950 degreesC. These results together with those of PADB measurements are explained by the model proposed in our previous study. The correlation between the characteristics of positron annihilation and the conversions of conduction type indicates that the formation of vacancy-type defects and the progressive variation of their concentrations during annealing are related to the electrical properties of the bulk InP material. (C) 2002 American Institute of Physics.