873 resultados para incremental learning algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we derive continuum equations for the generalization error of the Bayesian online algorithm (BOnA) for the one-layer perceptron with a spherical covariance matrix using the Rosenblatt potential and show, by numerical calculations, that the asymptotic performance of the algorithm is the same as the one for the optimal algorithm found by means of variational methods with the added advantage that the BOnA does not use any inaccessible information during learning. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper is described a didactic methodology combining current e-learning methods and the support of Intelligent Agents technologies. The aim is to favor the synthesis among theoretical approach and based practical approach using the so-called Intelligent Agent, software that exploits the Artificial Intelligence and that operates as tutor, facilitating the consumers in the training operations. The paper illustrates how such new Intelligent Agent algorithm (IA) is used in the training of employees working in the transportation sector, thanks to the experience gained with the PARMENIDE project - Promoting Advanced Resources and Methodologies for New Teaching and Learning Solutions in Digital Education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lifelong surveillance is not cost-effective after endovascular aneurysm repair (EVAR), but is required to detect aortic complications which are fatal if untreated (type 1/3 endoleak, sac expansion, device migration). Aneurysm morphology determines the probability of aortic complications and therefore the need for surveillance, but existing analyses have proven incapable of identifying patients at sufficiently low risk to justify abandoning surveillance. This study aimed to improve the prediction of aortic complications, through the application of machine-learning techniques. Patients undergoing EVAR at 2 centres were studied from 2004–2010. Aneurysm morphology had previously been studied to derive the SGVI Score for predicting aortic complications. Bayesian Neural Networks were designed using the same data, to dichotomise patients into groups at low- or high-risk of aortic complications. Network training was performed only on patients treated at centre 1. External validation was performed by assessing network performance independently of network training, on patients treated at centre 2. Discrimination was assessed by Kaplan-Meier analysis to compare aortic complications in predicted low-risk versus predicted high-risk patients. 761 patients aged 75 +/− 7 years underwent EVAR in 2 centres. Mean follow-up was 36+/− 20 months. Neural networks were created incorporating neck angu- lation/length/diameter/volume; AAA diameter/area/volume/length/tortuosity; and common iliac tortuosity/diameter. A 19-feature network predicted aor- tic complications with excellent discrimination and external validation (5-year freedom from aortic complications in predicted low-risk vs predicted high-risk patients: 97.9% vs. 63%; p < 0.0001). A Bayesian Neural-Network algorithm can identify patients in whom it may be safe to abandon surveillance after EVAR. This proposal requires prospective study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the theory of algorithm visualization and its education-related results obtained so far, then an algorithm visualization tool is going to be presented as an example, which we will finally evaluate. This article illustrates furthermore how algorithm visualization tools can be used by teachers and students during the teaching and learning process of programming, and equally evaluates teaching and learning methods. Two tools will be introduced: Jeliot and TRAKLA2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the construct validity of the Choices questionnaire that purported to support the theory of Learning Agility. Specifically, Learning Agility attempts to predict an individual's potential performance in new tasks. The construct validity will be measured by examining the convergent/discriminant validity of the Choices Questionnaire against a cognitive ability measure and two personality measures. The Choices Questionnaire did tap a construct that is unique to the cognitive ability and the personality measures, thus suggesting that this measure may have considerable value in personnel selection. This study also examined the relationship of this pew measure to job performance and job promotability. Results of this study found that the Choices Questionnaire predicted job performance and job promotability above and beyond cognitive ability and personality. Data from 107 law enforcement officers, along with two of their co-workers and a supervisor resulted in a correlation of .08 between Learning Agility and cognitive ability. Learning Agility correlated .07 with Learning Goal Orientation and. 17 with Performance Goal Orientation. Correlations with the Big Five Personality factors ranged from −.06 to. 13 with Conscientiousness and Openness to Experience, respectively. Learning Agility correlated .40 with supervisory ratings of job promotability and correlated .3 7 with supervisory ratings of overall job performance. Hierarchical regression analysis found incremental validity for Learning Agility over cognitive ability and the Big Five factors of personality for supervisory ratings of both promotability and overall job performance. A literature review was completed to integrate the Learning Agility construct into a nomological net of personnel selection research. Additionally, practical applications and future research directions are discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge-based radiation treatment is an emerging concept in radiotherapy. It

mainly refers to the technique that can guide or automate treatment planning in

clinic by learning from prior knowledge. Dierent models are developed to realize

it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This

model can automatically determine both beam conguration and optimization ob-

jectives with non-coplanar beams based on patient-specic anatomical information.

Although plans automatically generated by this model demonstrate equivalent or

better dosimetric quality compared to clinical approved plans, its validity and gener-

ality are limited due to the empirical assignment to a coecient called angle spread

constraint dened in the beam eciency index used for beam ranking. To eliminate

these limitations, a systematic study on this coecient is needed to acquire evidences

for its optimal value.

To achieve this purpose, eleven lung cancer patients with complex tumor shape

with non-coplanar beams adopted in clinical approved plans were retrospectively

studied in the frame of the automatic lung IMRT treatment algorithm. The primary

and boost plans used in three patients were treated as dierent cases due to the

dierent target size and shape. A total of 14 lung cases, thus, were re-planned using

the knowledge-based automatic lung IMRT planning algorithm by varying angle

spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency

index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good

as possible. Important dosimetric parameters for PTV and OARs, quantitatively

re

ecting the plan quality, were extracted from the DVHs and analyzed as a function

of angle spread constraint for each case. Comparisons of these parameters between

clinical plans and model-based plans were evaluated by two-sampled Students t-tests,

and regression analysis on a composite index built on the percentage errors between

dosimetric parameters in the model-based plans and those in the clinical plans as a

function of angle spread constraint was performed.

Results show that model-based plans generally have equivalent or better quality

than clinical approved plans, qualitatively and quantitatively. All dosimetric param-

eters except those for lungs in the automatically generated plans are statistically

better or comparable to those in the clinical plans. On average, more than 15% re-

duction on conformity index and homogeneity index for PTV and V40, V60 for heart

while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The

intra-plan comparison among model-based plans demonstrates that plan quality does

not change much with angle spread constraint larger than 0.4. Further examination

on the variation curve of the composite index as a function of angle spread constraint

shows that 0.6 is the optimal value that can result in statistically the best achievable

plans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to examine the promising contributions of the Concept Maps for Learning (CMfL) website to assessment for learning practices. The CMfL website generates concept maps from relatedness degree of concepts pairs through the Pathfinder Scaling Algorithm. This website also confirms the established principles of effective assessment for learning, for it is capable of automatically assessing students' higher order knowledge, simultaneously identifying strengths and weaknesses, immediately providing useful feedback and being user-friendly. According to the default assessment plan, students first create concept maps on a particular subject and then they are given individualized visual feedback followed by associated instructional material (e.g., videos, website links, examples, problems, etc.) based on a comparison of their concept map and a subject matter expert's map. After studying the feedback and instructional material, teachers can monitor their students' progress by having them create revised concept maps. Therefore, we claim that the CMfL website may reduce the workload of teachers as well as provide immediate and delayed feedback on the weaknesses of students in different forms such as graphical and multimedia. For the following study, we will examine whether these promising contributions to assessment for learning are valid in a variety of subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as Multi- Dimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students’ misconceptions. To accomplish this, each student’s knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student’s concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback.