997 resultados para imaging space
Resumo:
In a prospective study 105 patients with symptoms of stress incontinence underwent video-urodynamic testing, including resting urethral pressure profilometry and translabial ultrasound. The urethral pressure profile (UPP) included maximum urethral closure pressure (MUCP), functional length (FL) and area under the curve (AUC). Ultrasound parameters included urethral thickness, urethral rotation and bladder neck descent, as well as funneling/opening of the internal urethral meatus on Valsalva maneuver. Levator contraction strength was assessed measuring the cranioventral displacement of the internal meatus. Negative correlations between UPP data and age, parity and previous surgery were observed which were consistent with literature data. There was a positive correlation :between the urethral AP diameter on ultrasound and the MUCP, which agrees with reports showing reduced sphincter thickness or volume in stress-incontinent women. Hypermobility on ultrasound did not correlate with UPP data. However, a lower MUCP correlated with extensive opening of the bladder neck. Finally, there was a trend towards poorer pelvic floor function with lower MUCP measurements.
Resumo:
When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Recent years have seen the introduction of new and varied designs of activated sludge plants. With increasing needs for higher efficiencies and lower costs, the possibility of a plant that operates more effectively has created the need for tools that can be used to evaluate and compare designs at the design stage. One such tool is the operating space diagram. It is the aim of this paper to present this tool and demonstrate its application and relevance to design using a simple case study. In the case study, use of the operating space diagram suggested changes in design that would improve the flexibility of the process. It also was useful for designing suitable control strategies.
Resumo:
Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.
Resumo:
We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimodeVCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects. (C) 2002 Optical Society of America.
Resumo:
Magnetic resonance imaging (MRI) is an easily automated, reliable technique to investigate axial mixing within rotating drums. Moist bran can be clearly differentiated from dry bran using MRI allowing a non-segregating tracer for axial mixing. For a 20-cm diameter drum, the axial dispersion coefficient in the particle bed was 0.51 cm s(-2). Axial dispersion is scale-dependent.
Resumo:
Background-In vivo methods to evaluate the size and composition of atherosclerotic lesions in animal models of atherosclerosis would assist in the testing of antiatherosclerotic drugs. We have developed an MRI method of detecting atherosclerotic plaque in the major vessels at the base of the heart in low-density lipoprotein (LDL) receptor-knockout (LDLR-/-) mice on a high-fat diet. Methods and Results-Three-dimensional fast spin-echo magnetic resonance images were acquired at 7 T by use of cardiac and respiratory triggering, with approximate to140-mum isotropic resolution, over 30 minutes. Comparison of normal and fat-suppressed images from female LDLR-/- mice I week before and 8 and 12 weeks after the transfer to a high-fat diet allowed visualization and quantification of plaque development in the innominate artery in vivo. Plaque mean cross-sectional area was significantly greater at week 12 in the LDLR-/- mice (0.14+/-0.086 mm(2) [mean+/-SD]) than in wild-type control mice on a normal diet (0.017+/-0.031 mm(2), p
Resumo:
The diversity literature is replete with examples of poor outcomes in Culturally Heterogeneous Workgroups (CHWs) caused by relational difficulties. Although it is widely recognised that culture shapes people's interpretation of behavior and their style of interaction with others in the workplace, what is ill understood is what the specific conflict triggers of these conflicts are. In this paper, we argue that differences in cultural norms and views of physical and psychological space are major triggers of conflict in CHWs. Findings from a field study support the proposition that different viewpoints regarding the use of space, the inability to retreat from exposure to others, decreased interpersonal space, and privacy invasion moderate the relationship between cultural diversity in the workgroup and the type, frequency, and duration of conflict events in CHWs. The paper represents a first step in elucidating the role of space in cross-cultural interactions in the workplace and how space may be a potentially important conflict control mechanism for managers of culturally diverse workgroups.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.