753 resultados para cellulose solution in ionic liquids
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
Rhenium (I, III-V or VII) complexes bearing N-donor or oxo-ligands catalyse the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g. 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone and 3,3-dimethyl-2-butanone) into the corresponding lactones or esters, in the presence of aqueous H2O2 (30%). The effects of various reaction parameters are studied allowing to achieve yields up to 54%.
Resumo:
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and A13 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and A13, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at 14/0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Dissertation presented to obtain the Ph.D. degree in Chemistry (Physical Chemistry) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
In order to improve the diagnosis of human leptospirosis, we standardized the dot-ELISA for the search of specific IgM antibodies in saliva. Saliva and serum samples were collected simultaneously from 20 patients with the icterohemorrhagic form of the disease, from 10 patients with other pathologies and from 5 negative controls. Leptospires of serovars icterohaemorrhagiae, canicola, hebdomadis, brasiliensis and cynopteri grown in EMJH medium and mixed together in equal volumes, were used as antigen at individual protein concentration of 0.2 µg/µl. In the solid phase of the test we used polyester fabric impregnated with N-methylolacrylamide resin. The antigen volume for each test was 1µl, the saliva volume was 8 µl, and the volume of peroxidase-labelled anti-human IgM conjugate was 30 µl. A visual reading was taken after development in freshly prepared chromogen solution. In contrast to the classic nitrocellulose membrane support, the fabric support is easy to obtain and to handle. Saliva can be collected directly onto the support, a fact that facilitates the method and reduces the expenses and risks related to blood processing.
Resumo:
Master’s Thesis in Computer Engineering
Resumo:
Os Líquidos Iónicos (LIs) são sais orgânicos constituídos exclusivamente por iões e possuem pontos de fusão inferiores a 100ºC. As suas propriedades únicas e o facto de ser possível ajustar as suas propriedades físicas, químicas e biológicas, de acordo com o objetivo pretendido, tornam esta classe de compostos, um grande objeto de estudo de inúmeros investigadores. Desde os inícios da sua aplicação até à atualidade, a investigação nesta área expandiu o seu raio de ação, estando já descrito o seu potencial como agentes antimicrobianos e, mais recentemente, como compostos farmacêuticos ativos. Atualmente muitas das suas aplicações são baseadas nas suas propriedades biológicas. Esta Tese teve como objetivo avaliar a influência que os LIs podem exercer a nível do crescimento bacteriano e estudar alternativas de combater a resistência bacteriana. Todos os LIs utilizados neste trabalho tinham como anião o ácido valpróico, sendo utilizados catiões orgânicos de amónio e de imidazólio. Foram utilizadas 4 bactérias e avaliou-se a atividade biológica e a respetiva taxa de crescimento. O estudo da sua atividade biológica foi feito através da determinação da Concentração Mínima Inibitória (CMI) e a análise das suas curvas de crescimentos na presença e ausência de composto. Com este trabalho foi possível verificar que dentro dos compostos em estudo, LIs derivados do valproato, o Valproato com o cetilperidínio [valp] [cetylpir] foi o que influenciou o crescimento de todas as bactérias estudadas. Este estudo demonstrou o potencial antibacteriano de alguns compostos, podendo desta forma vir a ser utilizados para fins farmacêuticos
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável