947 resultados para atom interferometry
Resumo:
At the end of its tether! The fusion of a six-membered ring onto the four-carbon-atom tether of substrate 1 provides an efficient approach toward the polycyclic ring systems of the natural products aphidicolin and stemodinone. The reaction represents a unique example of a preference for product formation from an endo exciplex in an intramolecular system (exo:endo 2:3=1.0:1.2).
Resumo:
[Cu(2-acetylpyridine)(2)]ClO4 (1), characterised here, has a novel Cu'N202 core in the solid state. Variable-temperature H-1 NMR studies show that the two chelate rings open up in solution at room temperature and the keto oxygen atoms dangle freely. As the temperature is lowered, the 0 atoms tend to bind to the metal atom. The corresponding silver(I) complex, [Ag(2-acetylpyridine)2]ClO4 (4), characterised by single-crystal X-ray crystallography, has an (AgN2)-N-I core in the solid state as well as in solution. Thus, while 1 is fluxional, 4 is not. In cyclic voltammetry, complex 1 displays a quasireversible Cu-II/I couple with a half-wave potential of 0.40 V vs. SCE. Complex I is easily oxidised by air and H2O2 in methanol to give rise to a dinuclear copper(II) complex where the ligand framework is not simple acetylpyridine. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Modal filtering is based on the capability of single-mode waveguides to transmit only one complex amplitude function to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible in a nulling interferometer. In the present paper we focus on the progress of Integrated Optics in the thermal infrared [6-20 mu m] range, one of the two candidate technologies for the fabrication of Modal Filters, together with fiber optics. In conclusion of the European Space Agency's (ESA) "Integrated Optics for Darwin" activity, etched layers of clialcogenide material deposited on chalcogenide glass substrates was selected among four candidates as the technology with the best potential to simultaneously meet the filtering efficiency, absolute and spectral transmission, and beam coupling requirements. ESA's new "Integrated Optics" activity started at mid-2007 with the purpose of improving the technology until compliant prototypes can be manufactured and validated, expectedly by the end of 2009. The present paper aims at introducing the project and the components requirements and functions. The selected materials and preliminary designs, as well as the experimental validation logic and test benches are presented. More details are provided on the progress of the main technology: vacuum deposition in the co-evaporation mode and subsequent etching of chalcogenide layers. In addition., preliminary investigations of an alternative technology based on burying a chalcogenide optical fiber core into a chalcogenide substrate are presented. Specific developments of anti-reflective solutions designed for the mitigation of Fresnel losses at the input and output surface of the components are also introduced.
Resumo:
We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.
Resumo:
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Resumo:
A Theatre to Address explores the work of contemporary artists who use text as both a visual and sonic form. In this programme, text appears not primarily as a means of communication, but as something which has shape and structure of its own. The Reading Room will also be displaying work that looks at text as concrete or visual poetry, and the script in artists' practice. Clare Gasson presents a new work The traveller - walking walking walking through ... that explores the connection between the text, the rhythm and the action. Maryam Jafri presents a performance-lecture Death With Friends, a body of visual and textual material that forms the basis for her new film of the same name. Pil and Galia Kollectiv present a radical worship for the apocalypse, featuring a sermon for the Church of the Atom with live music by Gelbart.
Resumo:
The temporal variability of the atmosphere through which radio waves pass in the technique of differential radar interferometry can seriously limit the accuracy with which the method can measure surface motion. A forward, nested mesoscale model of the atmosphere can be used to simulate the variable water content along the radar path and the resultant phase delays. Using this approach we demonstrate how to correct an interferogram of Mount Etna in Sicily associated with an eruption in 2004-5. The regional mesoscale model (Unified Model) used to simulate the atmosphere at higher resolutions consists of four nested domains increasing in resolution (12, 4, 1, 0.3 km), sitting within the analysis version of a global numerical model that is used to initiate the simulation. Using the high resolution 3D model output we compute the surface pressure, temperature and the water vapour, liquid and solid water contents, enabling the dominant hydrostatic and wet delays to be calculated at specific times corresponding to the acquisition of the radar data. We can also simulate the second-order delay effects due to liquid water and ice.
Resumo:
We discuss some novel technologies that enable the implementation of shearing interferometry at the terahertz part of the spectrum. Possible applications include the direct measurement of lens parameters, the measurement of refractive index of materials that are transparent to terahertz frequencies, determination of homogeneity of samples, measurement of optical distortions and the non-contact evaluation of thermal expansion coefficient of materials buried inside media that are opaque to optical or infrared frequencies but transparent to THz frequencies. The introduction of a shear to a Gaussian free-space propagating terahertz beam in a controlled manner also makes possible a range of new encoding and optical signal processing modalities.
Resumo:
Interferometric Synthetic Aperture Radar (InSAR) measurements of surface deformation at Nyamuragira Volcano between 1996 and 2010 reveal a variety of co-eruptive and inter-eruptive signals. During 7 of the 8 eruptions in this period deformation was measured that is consistent with the emplacement of shallow near-vertical dykes feeding the eruptive fissures and associated with a NNW-trending fissure zone that traverses the summit caldera. Between eruptions the caldera and the summit part of this fissure zone subsided gradually (b3–5 cm/year). We also find evidence of post-eruption subsidence around the sites of the main vents of some flank eruptions (2002, 2004, 2006, and 2010). In the 6 months prior to the 2010 eruption a10-km wide zone centred on the caldera inflated by 1–2 cm. The low magnitude of this signal suggests that the presumed magma reservoir at 3–8 km depth contains highly compressible magma with little stored elastic strain energy. To the north of the caldera the fissure zone splits into WNW and NE branches around a zone that has a distinct InSAR signal. We interpret this zone to represent an elevated, 'stable' block of basement rocks buried by lavas within the Rift Zone.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
The purpose of this work is to study the potentialities in the phase-shifting real-time holographic interferometry using photorefractive crystals as the recording medium for wave-optics analysis in optical elements and non-linear optical materials. This technique was used for obtaining quantitative measurements from the phase distributions of the wave front of lens and lens systems along the propagation direction with in situ visualization, monitoring and analysis in real time. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The purpose of this work is to study the potentialities of phase-shifting real-time holographic interferometry for the analysis of light-induced lens in photoreffactive and nonlinear optical materials. We show that this technique can be used for quantitative evaluation of the phase distribution of a wavefront changed by a light-induced lens and, consequently, the refractive index changes in these materials. The basic principle of this technique combines real-time holographic interferometry with phase-shifting technique for interferogram analysis. This method is demonstrated with in situ visualization, monitoring and analysis in real-time and uses a Bi(12)SiO(20) crystal as the holographic medium and a Bi(12)TiO(20) as the test sample. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S(1/2), 2P(1/2) and 2P(3/2) is lifted completely, such that new transition channels are allowed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work was the force-displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force-displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.