986 resultados para Wood products
Resumo:
Southern pine is a well-established group of commercial plantation species in Queensland and produces a premium grade, quality softwood. The southern pines group is valued for excellent growth, straightness, minimal branching, wood density and even wood texture. Southern pine timber products have a well-established processing industry and market in Queensland. It is in demand both nationally and internationally. High-grade sawn wood serves the upper end of the domestic market and exports include sawn wood and woodchip.
Resumo:
Valko- ja ruskolahosienet tunnetaan luonnossa tehokkaimpina puun ja karikkeen lignoselluloosan lahottajina. Valkolahosienet pystyvät hajottamaan kaikkia puun osia: ligniiniä, selluloosaa ja hemiselluloosaa. Selektiivisesti ligniiniä hajottavat sienet lahottavat puusta suhteessa enemmän vaikeasti hajoavaa ligniiniä kuin selluloosaa tai hemiselluloosaa, jolloin jäljelle jää valkoista ja miltei puhdasta selluloosaa. Bioteknisissä sovelluksissa juuri selektiviiviset valkolahottajat ovat kiinnostavia. Niiden avulla voidaan puuhaketta esikäsitellä esimerkiksi paperinvalmistuksessa haitallisen ligniinin poistamiseksi. Ruskolahosienet ovat huomattavia puun, puutavaran ja puisten rakenteiden lahottajia, kuten tässä työssä käytetty Gloeophyllum trabeum (saunasieni ) ja Poria (Postia) placenta (istukkakääpä). Ruskolahosienet hajottavat puusta hemiselluloosan lisäksi selluloosaa, jolloin jää jäljelle ruskea ja jauhomaiseksi mureneva ligniini. Ruskolahosienet muovaavat ligniiniä jonkin verran. Kahden ruskolahosienen G. trabeumin ja P. placentan lisäksi tutkittiin valkolahosieniä, joista Ceriporiopsis subvermispora (karstakääpä) ja harvinainen Physisporinus rivulosus -sieni (talikääpä) hajottavat ligniiniä erittäin selektiivisesti. Phanerochaete chrysosporium on kaikkialla paljon tutkittu sieni, ja Phlebia radiata valkolahosientä (rusorypykkä) on tutkittu paljon mikrobiologian osastolla. Lisäksi tutkittiin Phlebia tremellosa -sienten (hytyrypykkä) ligninolyyttisten entsyymien tuottoa ja 14C-leimatun synteettisen ligniinin (DHP) hajotusta. P. radiata ja P. tremellosa -sienten on todettu aiemmin hajottavan ligniiniä selektiivisesti. Työssä selvitettiin miten sienten kasvua voi mitata, miten vertailukelpoisia eri mittaamismenetelmillä saadut tulokset ovat ja ilmenevätkö sienten aktiivisimmat kasvuvaiheet samaan aikaan eri menetelmillä mitattuna. Tärkeimmät tulokset olivat seuraavat havainnot: (i) P. radiata ja P. tremellosa -sienikannat tuottivat ligniini- ja mangaaniperoksidaasientsyymejä (LiP ja MnP) sekä lakkaasia, ja sienistä puhdistettiin 2-3 LiP- ja P. radiatasta yksi MnP-entsyymi; (ii) P. tremellosa -sienet hajottivat leimattua synteettistä ligniiniä (DHP) yhtä hyvin kuin paljon tutkitut P. chrysosporium ja P. radiata -sienet; (iii) puu, sienen luonnollinen kasvualusta, lisäsi valkolaho- ja ruskolahosienten demetoksylaatiota [O14CH3]-leimatusta ligniinin malliyhdisteestä 14CO2:ksi ilman puuta olleeseen alustaan verrattuna; (iv) demetoksylaatio (14CO2:n tuotto) oli normaalissa ilma-atmosfäärissä useimmiten parempi happeen verrattuna; (v) hapessa paras 14CO2:n tuotto saatiin puupalakasvatuksissa, joihin oli lisätty ravinnetyppeä tai typen lisäksi glukoosia sekä valkolaho- että ruskolahosienillä; (vi) ilmassa 14CO2:n tuotto oli puulla voimakkainta valkolahosienillä ilman lisäravinteita, kun taas G. trabeum -sienellä se oli yhtä hyvä eri alustoissa; (vii) biomassan muodostuminen rihmastojen ergosterolipitoisuuksista mitattuna oli ruskolahosienillä parempi kuin valkolahosienillä; (viii) ja biomassojen huippupitoisuudet olivat 6:lla sienellä eri suuruisia ja niiden maksimimäärien ajankohdat vaihtelivat viiden viikon kasvatusten kuluessa. Mikrobiologian osastolla Viikissä eristetty ja paljon tutkittu P. radiata -valkolahosieni oli mukana kaikissa tehdyissä kokeissa. Sienen LiP-aktiivisuus ja 14CO2:n tuotto 14C-rengas-leimatusta synteettisestä ligniinistä (DHP) korreloivat erittäin hyvin. Biomassan muodostuminen ergosterolilla määritettynä tuki hyvin entsyymiaktiivisuusmittauksilla ja isotooppikasvatuksilla saatuja tuloksia.
Resumo:
Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.
Resumo:
Basidiomycetous white-rot fungi are the only organisms that can efficiently decompose all the components of wood. Moreover, white-rot fungi possess the ability to mineralize recalcitrant lignin polymer with their extracellular, oxidative lignin-modifying enzymes (LMEs), i.e. laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP). Within one white-rot fungal species LMEs are typically present as several isozymes encoded by multiple genes. This study focused on two effi cient lignin-degrading white-rot fungal species, Phlebia radiata and Dichomitus squalens. Molecular level knowledge of the LMEs of the Finnish isolate P. radiata FBCC43 (79, ATCC 64658) was complemented with cloning and characterization of a new laccase (Pr-lac2), two new LiP-encoding genes (Pr-lip1, Pr-lip4), and Pr-lip3 gene that has been previously described only at cDNAlevel. Also, two laccase-encoding genes (Ds-lac3, Ds-lac4) of D. squalens were cloned and characterized for the first time. Phylogenetic analysis revealed close evolutionary relationships between the P. radiata LiP isozymes. Distinct protein phylogeny for both P. radiata and D. squalens laccases suggested different physiological functions for the corresponding enzymes. Supplementation of P. radiata liquid culture medium with excess Cu2+ notably increased laccase activity and good fungal growth was achieved in complex medium rich with organic nitrogen. Wood is the natural substrate of lignin-degrading white-rot fungi, supporting production of enzymes and metabolites needed for fungal growth and the breakdown of lignocellulose. In this work, emphasis was on solid-state wood or wood-containing cultures that mimic the natural growth conditions of white-rot fungi. Transcript analyses showed that wood promoted expression of all the presently known LME-encoding genes of P. radiata and laccase-encoding genes of D. squalens. Expression of the studied individual LME-encoding genes of P. radiata and D. squalens was unequal in transcript quantities and apparently time-dependent, thus suggesting the importance of several distinct LMEs within one fungal species. In addition to LMEs, white-rot fungi secrete other compounds that are important in decomposition of wood and lignin. One of these compounds is oxalic acid, which is a common metabolite of wood-rotting fungi. Fungi produce also oxalic-acid degrading enzymes of which the most widespread is oxalate decarboxylase (ODC). However, the role of ODC in fungi is still ambiguous with propositions from regulation of intra and extracellular oxalic acid levels to a function in primary growth and concomitant production of ATP. In this study, intracellular ODC activity was detected in four white-rot fungal species, and D. squalens showed the highest ODC activity upon exposure to oxalic acid. Oxalic acid was the most common organic acid secreted by the ODC-positive white-rot fungi and the only organic acid detected in wood cultures. The ODC-encoding gene Ds-odc was cloned from two strains of D. squalens showing the first characterization of an odc-gene from a white-rot polypore species. Biochemical properties of the D. squalens ODC resembled those described for other basidiomycete ODCs. However, the translated amino acid sequence of Ds-odc has a novel N-terminal primary structure with a repetitive Ala-Ser-rich region of ca 60 amino acid residues in length. Expression of the Ds-odc transcripts suggested a constitutive metabolic role for the corresponding ODC enzyme. According to the results, it is proposed that ODC may have an essential implication for the growth and basic metabolism of wood-decaying fungi.
Resumo:
Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.
Resumo:
Abstract is not available.
Resumo:
Australian utility pole network is aging and reaching its end of life, with 70% of the 5 million poles currently in-service nationally installed within the 20 years following the end of World War II. The estimated investment required for the replacement or remedial maintenance of the aging 3.5 millions poles is as high as 1.75 billion dollars. Additionally, an estimated 21,700 high-durability new poles are required each year, representing further investment of 13.5 million dollars per year. Yet, agreements which progressively phase out logging of native forests around Australia have been signed, giving the industry about 25 years to make the transition from Crown native forests to plantations and private forests. As utility poles were traditionally cut from native forest hardwood species, finding solutions to source new poles currently presents a challenge. This paper presents tests on Veneer Based Composite hardwood hollow utility poles manufactured from Gympie messmate (Eucalyptus cloeziana) plantation thinning. Small diameter poles of nominal 115 mm internal diameter and 15 mm wall-thickness were manufactured in two half-poles butt jointed together, using 9 veneers per halfpole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles cut from mature trees and of similar size. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective technical solution to the current shortage of utility poles. © RILEM 2014.
Resumo:
The Australian hardwood plantation industry is challenged to identify profitable markets for the sale of its wood fibre. The majority of the hardwood plantations already established in Australia have been managed for the production of pulpwood; however, interest exists to identify more profitable and value-added markets. As a consequence of a predominately pulpwood-focused management regime, this plantation resource contains a range of qualities and performance. Identifying alternative processing strategies and products that suit young plantation-grown hardwoods have proved challenging, with low product recoveries and/or unmarketable products as the outcome of many studies. Simple spindleless lathe technology was used to process 918 billets from six commercially important Australian hardwood species. The study has demonstrated that the production of rotary peeled veneer is an effective method for converting plantation hardwood trees. Recovery rates significantly higher than those reported for more traditional processing techniques (e.g., sawmilling) were achieved. Veneer visually graded to industry standards exhibited favourable recoveries suitable for the manufacture of structural products.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
Two field trials were conducted with untreated coconut wood (“cocowood”) of varying densities against the subterranean termites Coptotermes acinaciformis (Froggatt) and Mastotermes darwiniensis Froggatt in northern Queensland, Australia. Both trials ran for 16 weeks during the summer months. Cocowood densities ranged from 256 kg/m3 to 1003 kg/m3, and the test specimens were equally divided between the two termite trial sites. Termite pressure was high at both sites where mean mass losses in the Scots pine sapwood feeder specimens were: 100% for C. acinaciformis and 74.7% for M. darwiniensis. Termite species and cocowood density effects were significant. Container and position effects were not significant. Mastotermes darwiniensis fed more on the cocowood than did C. acinaciformis despite consuming less of the Scots pine than did C. acinaciformis. Overall the susceptibility of cocowood to C. acinaciformis and M. darwiniensis decreases with increasing density, but all densities (apart from a few at the high end of the density range) could be considered susceptible, particularly to M. darwiniensis. Some deviations from this general trend are discussed as well as implications for the utilisation of cocowood as a building resource.
Resumo:
In Australia, plantation forests have increased in area by around 50% in the last 10 years. While this expansion has seen a modest 8% increase for softwoods, hardwood plantations have dramatically increased by over 150%. Hardwood plantations grown for high quality sawn timber are slow to mature, with a crop rotation time potentially reaching 35 years. With this long lead-time, each year the risk from fire, pests and adverse weather events dramatically increases, while not translating into substantially higher financial returns to the grower. To justify continued expansion of Australia's current hardwood plantation estate, it is becoming necessary to develop higher value end-uses for both pulpwood and smaller 'sawlog' resources. The use of the low commercial value stems currently culled during thinning appears to be a necessary option to improve the industry profitability and win new markets. This paper provides background information on Australian forests and plantations and gives an overview of potential uses of Australian hardwood plantation thinning logs, as their mechanical properties. More specifically, this paper reports on the development of structural Veneer Based Composite (VBC) products from hardwood plantation thinning logs, taking advantage of a recent technology developed to optimise the processing of this resource. The process used to manufacture a range of hollow-form veneer laminated structural products is presented and the mechanical characteristics of these products are investigated in the companion paper. The market applications and future opportunities for the proposed products are also discussed, as potential benefits to the timber industry. © RILEM 2014.
Application of Modern NMR Spectroscopic Techniques to Structural Studies of Wood and Pulp Components
Resumo:
Volatile organic compounds (VOCs) have a great influence on tropospheric chemistry; they affect ozone formation and they or their reaction products are able to take part in secondary organic aerosol formation; some of the VOCs are themselves toxic. Knowing the concentrations and sources of different reactive volatile organic compounds is essential for the development of ozone control strategies and for studies of secondary organic aerosol formation. The objective of this work was to study volatile organic compounds in urban air, develop and validate determination methods for them, characterize their concentrations and estimate the contributions of different VOC sources. Of the different compound groups detected in the urban air of Helsinki, alkanes were found to have the highest concentrations, but when the concentrations were scaled against the reactivity with hydroxyl radicals (OH), aromatic hydrocarbons and alkenes were found to have the greatest effect on local chemistry. Comparisons with rural sites showed that concentrations at Utö and Hyytiälä were generally lower than those in Helsinki, especially for the alkenes and aromatic hydrocarbons, but concentrations of halogenated hydrocarbons at Utö and carbonyls at Hyytiälä were at the same level as in Helsinki. Most halogenated hydrocarbons do not have any significant sources in Helsinki, and carbonyls are formed in the atmosphere in the reactions of other VOCs, and are therefore also produced in other than urban areas. At Hyytiälä carbonyls were found to have an important role in the local chemistry. The contribution of carbonyls as an OH sink was higher than that of the monoterpenes and aromatic hydrocarbons. Based on the emission profile and concentration measurements, the contributions of different sources were estimated at urban (Helsinki) and residential (Järvenpää) sites using a chemical mass balance (CMB) receptor model. It was shown that it is possible to apply CMB in the case of a large number of different compounds with different properties. According to the CMB analysis, the major sources for these VOCs in Helsinki were traffic and distant sources. At the residential site in Järvenpää, the contribution due to traffic was minor, while distant sources, liquid gasoline and wood combustion made higher contributions. It was also shown that wood combustion can be an important source at some locations of VOCs usually considered as traffic-related compounds (e.g., benzene).