907 resultados para Visual Odometry,Transformer,Deep learning
Resumo:
This action research observes a second year Japanese class at a university where foreign language courses are elective for undergraduate students. In this study, using the six strategies to teach Japanese speech acts that Ishihara and Cohen (2006) suggested, I conducted three classes and analyzed my teaching practice with a critical friend. These strategies assist learners toward the development of their understanding of the following Japanese speech acts and also keep the learners to use them in a manner appropriate to the context: (I) invitation and refusal; (2) compliments; and (3) asking for a permission. The aim of this research is not only to improve my instruction in relation to second language (L2) pragmatic development, but also to raise further questions and to develop future research. The findings are analyzed and the data derived from my journals, artifacts, students' work, observation sheets, interviews with my critical friend, and pretests and posttests are coded and presented. The analysis shows that (I) after my critical friend encouraged my study and my students gave me some positive comments after each lesson, I gained confidence in teaching the suggested speech acts; (2) teaching involved explaining concepts and strategies, creating the visual material (a video) showing the strategies, and explaining the relationship between the strategy and grammatical forms and samples of misusing the forms; (3) students' background and learning styles influenced lessons; and (4) pretest and posttests showed that the students' Icvel of their L2 appropriate pragmatics dramatically improved after each instruction. However, after careful observation, it was noted that some factors prevented students from producing the correct output even though they understood the speech act differences.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 E38 L64 2008
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).
Resumo:
L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don- nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu- rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits profonds, des concepts "abstraits" sont appris automatiquement. Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds, de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont la classification et le débruitement d’images quasi binaires. On permettra une rétroac- tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation, des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous présentons deux familles d’architectures, l’une, l’architecture complètement connectée, pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées sont des images, principalement des images de chiffres manuscrits. Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et visuels en terme de performance de reconstruction en ajoutant l’influence des couches supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés. On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre architecture, même si sa connectivité est contrainte.
Resumo:
We investigate the properties of feedforward neural networks trained with Hebbian learning algorithms. A new unsupervised algorithm is proposed which produces statistically uncorrelated outputs. The algorithm causes the weights of the network to converge to the eigenvectors of the input correlation with largest eigenvalues. The algorithm is closely related to the technique of Self-supervised Backpropagation, as well as other algorithms for unsupervised learning. Applications of the algorithm to texture processing, image coding, and stereo depth edge detection are given. We show that the algorithm can lead to the development of filters qualitatively similar to those found in primate visual cortex.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.
Resumo:
The educational software and computer assisted learning has been used in schools to promote the interest of students in new ways of thinking and learning so it can be useful in the reading learning process. Experimental studies performed in preschool and school age population have shown a better yield and a positive effect in reading, mathematics and cognitive skills in children who use educative software for fi fteen to twenty minutes a day periods. The goal of this study was to evaluate the progression in verbal, visual-motor integration and reading skills in children who were using educational software to compare them with a group in traditional pedagogic methodology. Results: All children were evaluated before using any kind of pedagogic approach. Initial evaluation revealed a lower–age score in all applied test. 11% of them were at high risk for learning disorders. There was a second evaluation that showed a significant positive change compared with the fi rst one. Nevertheless, despite some items, there were no general differences comparing the groups according if they were using or not a computer. In conclusion, policies on using educational software and computers must be revaluated due to the fact that children in our public schools come from a deprived environment with a lack of opportunities to use technologies.
Resumo:
In a time when higher education come for deep changes and if intends an education more centered in the pupil, the teach-learning portfolios appears as a tool to use, because versatile and with innumerable potentialities. This article reveals the results gotten with higher education teachers, who we looked for to know if these appeal in use the teach-learning portfolios, in the curricular units that teach. We looked for, equally, to perceive of that forms these are used. This is an exploratory study, basically descriptive, that does not have pretensions to generalize for all the teaching population. We elaborated and we applied a questionnaire, with 290 teachers of higher education public, university and polytechnic. We verify that the percentage of the teachers that uses the portfolios in the teach- learning process is not very raised.
Resumo:
La tesis se centra en el aprendizaje personalizado y en la integración de Unidades de Aprendizaje. El objetivo fundamental es mejorar la expresividad pedagógica de IMS-LD, refinando estructuras de modelado y arquitectura existentes y desarrollando estructuras complementarias que permitan una formalización más precisa, versátil y sencilla de procesos de aprendizaje adaptativo y de mecanismos y procesos de integración con sistemas de aprendizaje y otras especificaciones. En esta tesis se estudia la especificación desde la base, analizando su modelo de información y cómo se construyen Unidades de Aprendizaje. Se analiza la estructura de la especificación, basándose en un estudio teórico y una investigación práctica fruto del modelado de Unidades de Aprendizaje reales y ejecutables que proporcionan una información útil de base. A partir de este estudio, se analiza la integración de Unidades de Aprendizaje con otros sistemas y especificaciones, abarcando desde la integración mínima mediante un enlace directo hasta compartir variables y estados que permiten una comunicación en tiempo real de ambas partes. La conclusión es que IMS-LD necesita una reestructuración y modificación de ciertos elementos, así como la incorporación de otros nuevos, para mejorar una expresividad pedagógica y una capacidad de integración con otros sistemas de aprendizaje y estándares eLearning, si se pretenden alcanzar: la personalización del proceso de aprendizaje y la interoperabilidad real. La implantación de la especificación se vería mejorada si existieran unas herramientas de más alto nivel, preferiblemente con planteamiento visual, que permitieran un modelado sencillo por parte de los usuarios finales reales de este tipo de especificaciones, como son los profesores, los creadores de contenido y los pedagogos-didactas que diseñan la experiencia de aprendizaje.
Resumo:
Es la culminación de cuarenta años de trabajo en el aprendizaje y en el pensamiento, por parte de un equipo de jóvenes licenciados que buscaba formas más eficaces de construcción de significados a través de un enfoque llamado de comunicación estructural. Después de años de desarrollo, primero en ambientes educativos y luego en los negocios y en la gestión, su propuesta ha dado lugar al método y las herramientas del pensamiento logovisual y este texto es el primer intento para documentar su aplicación en las escuelas. Los beneficios de este método de pensamiento logovisual son múltiples tanto para los alumnos como para los profesores y los administradores educativos.
Resumo:
Recurso donde se analizan las diferentes formas en que se pueden enseñar las matemáticas a alumnos con distintos estilos de aprendizaje y cómo identificarlos. Ofrece de un modo práctico los posibles modos de comprender algunos de los conceptos necesarios para los exámenes de GCSE: el concepto de número, los modelos para la multiplicación y la división, el valor ordinal y decimales, fracciones, relación, proporción, porcentajes, el álgebra, forma, espacio, las medidas, los ángulos, círculos y manejo de datos. Incluye: ideas para utilizar en clase; propuestas para enseñar conceptos básicos de una manera visual; consejos prácticos y orientaciones; recursos fotocopiables.
Resumo:
Multimedia Interactive Book (miBook) reflects the development of a new concept of virtual interpretation of traditional text books and audio-visual content. By encompassing new technological approaches, using augmented reality technology, allows the final user to experience a variety of sensorial stimuli while enjoying and interacting with the content; therefore enhancing the learning process. miBook stands for a global educational intention to enable people not only to access but also to appropriate intellectually valuable contents coming from different linguistic and cultural contexts.