976 resultados para Validation par connaissance expert
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
OBJECTIVE To examine the psychometric properties of a Chinese version of the Problem Areas In Diabetes (PAID-C) scale. RESEARCH DESIGN AND METHODS The reliability and validity of the PAID-C were evaluated in a convenience sample of 205 outpatients with type 2 diabetes. Confirmatory factor analysis, Bland-Altman analysis, and Spearman's correlations facilitated the psychometric evaluation. RESULTS Confirmatory factor analysis confirmed a one-factor structure of the PAID-C (χ2/df ratio = 1.894, goodness-of-fit index = 0.901, comparative fit index = 0.905, root mean square error of approximation = 0.066). The PAID-C was associated with A1C (rs = 0.15; P < 0.05) and diabetes self-care behaviors in general diet (rs = −0.17; P < 0.05) and exercise (rs = −0.17; P < 0.05). The 4-week test-retest reliability demonstrated satisfactory stability (rs = 0.83; P < 0.01). CONCLUSIONS The PAID-C is a reliable and valid measure to determine diabetes-related emotional distress in Chinese people with type 2 diabetes.
Resumo:
A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.
Resumo:
Principal Topic Venture ideas are at the heart of entrepreneurship (Davidsson, 2004). However, we are yet to learn what factors drive entrepreneurs’ perceptions of the attractiveness of venture ideas, and what the relative importance of these factors are for their decision to pursue an idea. The expected financial gain is one factor that will obviously influence the perceived attractiveness of a venture idea (Shepherd & DeTienne, 2005). In addition, the degree of novelty of venture ideas along one or more dimensions such as new products/services, new method of production, enter into new markets/customer and new method of promotion may affect their attractiveness (Schumpeter, 1934). Further, according to the notion of an individual-opportunity nexus venture ideas are closely associated with certain individual characteristics (relatedness). Shane (2000) empirically identified that individual’s prior knowledge is closely associated with the recognition of venture ideas. Sarasvathy’s (2001; 2008) Effectuation theory proposes a high degree of relatedness between venture ideas and the resource position of the individual. This study examines how entrepreneurs weigh considerations of different forms of novelty and relatedness as well as potential financial gain in assessing the attractiveness of venture ideas. Method I use conjoint analysis to determine how expert entrepreneurs develop preferences for venture ideas which involved with different degrees of novelty, relatedness and potential gain. The conjoint analysis estimates respondents’ preferences in terms of utilities (or part-worth) for each level of novelty, relatedness and potential gain of venture ideas. A sample of 32 expert entrepreneurs who were awarded young entrepreneurship awards were selected for the study. Each respondent was interviewed providing with 32 scenarios which explicate different combinations of possible profiles open them into consideration. Results and Implications Results indicate that while the respondents do not prefer mere imitation they receive higher utility for low to medium degree of newness suggesting that high degrees of newness are fraught with greater risk and/or greater resource needs. Respondents pay considerable weight on alignment with the knowledge and skills they already posses in choosing particular venture idea. The initial resource position of entrepreneurs is not equally important. Even though expected potential financial gain gives substantial utility, result indicate that it is not a dominant factor for the attractiveness of venture idea.
Resumo:
Hazard perception in driving involves a number of different processes. This paper reports the development of two measures designed to separate these processes. A Hazard Perception Test was developed to measure how quickly drivers could anticipate hazards overall, incorporating detection, trajectory prediction, and hazard classification judgements. A Hazard Change Detection Task was developed to measure how quickly drivers can detect a hazard in a static image regardless of whether they consider it hazardous or not. For the Hazard Perception Test, young novices were slower than mid-age experienced drivers, consistent with differences in crash risk, and test performance correlated with scores in pre-existing Hazard Perception Tests. For drivers aged 65 and over, scores on the Hazard Perception Test declined with age and correlated with both contrast sensitivity and a Useful Field of View measure. For the Hazard Change Detection Task, novices responded quicker than the experienced drivers, contrary to crash risk trends, and test performance did not correlate with measures of overall hazard perception. However for drivers aged 65 and over, test performance declined with age and correlated with both hazard perception and Useful Field of View. Overall we concluded that there was support for the validity of the Hazard Perception Test for all ages but the Hazard Change Detection Task might only be appropriate for use with older drivers.
Resumo:
Objective: Empowerment is a complex process of psychological, social, organizational and structural change. It allows individuals and groups to achieve positive growth and effectively address the social and psychological impacts of historical oppression, marginalization and disadvantage. The Growth and Empowerment Measure (GEM) was developed to measure change in dimensions of empowerment as defi ned and described by Aboriginal Australians who participated in the Family Well Being programme.---------- Method: The GEM has two components: a 14-item Emotional Empowerment Scale (EES14) and 12 Scenarios (12S). It is accompanied by the Kessler 6 Psychological Distress Scale (K6), supplemented by two questions assessing frequency of happy and angry feelings. For validation, the measure was applied with 184 Indigenous Australian participants involved in personal and/or organizational social health activities.---------- Results: Psychometric analyses of the new instruments support their validity and reliability and indicate two-component structures for both the EES (Self-capacity; Inner peace) and the 12S (Healing and enabling growth, Connection and purpose). Strong correlations were observed across the scales and subscales. Participants who scored higher on the newly developed scales showed lower distress on the K6, particularly when the two additional questions were included. However, exploratory factor analyses demonstrated that GEM subscales are separable from the Kessler distress measure.---------- Conclusion: The GEM shows promise in enabling measurement and enhancing understanding of both process and outcome of psychological and social empowerment within an Australian Indigenous context.
Resumo:
This paper investigates how software designers use their knowledge during the design process. The research is based on the analysis of the observational and verbal data from three software design teams generated during the conceptual stage of the design process. The knowledge captured from the analysis of the mapped design team data is utilized to generate descriptive models of novice and expert designers. These models contribute to a better understanding of the connections between, and integration of, designer variables, and to a better understanding of software design expertise and its development. The models are transferable to other domains.
Resumo:
Process modeling is an emergent area of Information Systems research that is characterized through an abundance of conceptual work with little empirical research. To fill this gap, this paper reports on the development and validation of an instrument to measure user acceptance of process modeling grammars. We advance an extended model for a multi-stage measurement instrument development procedure, which incorporates feedback from both expert and user panels. We identify two main contributions: First, we provide a validated measurement instrument for the study of user acceptance of process modeling grammars, which can be used to assist in further empirical studies that investigate phenomena associated with the business process modeling domain. Second, in doing so, we describe in detail a procedural model for developing measurement instruments that ensures high levels of reliability and validity, which may assist fellow scholars in executing their empirical research.
Resumo:
From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.
Resumo:
This study investigated, validated, and applied the optimum conditions for a modified microwave assisted digestion method for subsequent ICP-MS determination of mercury, cadmium, and lead in two matrices relevant to water quality, that is, sediment and fish. Three different combinations of power, pressure, and time conditions for microwave-assisted digestion were tested, using two certified reference materials representing the two matrices, to determine the optimum set of conditions. Validation of the optimized method indicated better recovery of the studied metals compared to standard methods. The validated method was applied to sediment and fish samples collected from Agusan River and one of its tributaries, located in Eastern Mindanao, Philippines. The metal concentrations in sediment ranged from 2.85 to 341.06 mg/kg for Hg, 0.05 to 44.46 mg/kg for Cd and 2.20 to 1256.16 mg/kg for Pb. The results indicate that the concentrations of these metals in the sediments rapidly decrease with distance downstream from sites of contamination. In the selected fish species, the metals were detected but at levels that are considered safe for human consumption, with concentrations of 2.14 to 6.82 μg/kg for Hg, 0.035 to 0.068 μg/kg for Cd, and 0.019 to 0.529 μg/kg for Pb.
Resumo:
Background Outcome expectancies are a key cognitive construct in the etiology, assessment and treatment of Substance Use Disorders. There is a research and clinical need for a cannabis expectancy measure validated in a clinical sample of cannabis users. Method The Cannabis Expectancy Questionnaire (CEQ) was subjected to exploratory (n = 501, mean age 27.45, 78% male) and confirmatory (n = 505, mean age 27.69, 78% male) factor analysis in two separate samples of cannabis users attending an outpatient cannabis treatment program. Weekly cannabis consumption was clinically assessed and patients completed the Severity of Dependence Scale-Cannabis (SDS-C) and the General Health Questionnaire (GHQ-28). Results Two factors representing Negative Cannabis Expectancies and Positive Cannabis Expectancies were identified. These provided a robust statistical and conceptual fit for the data. Internal reliabilities were high. Negative expectancies were associated with greater dependence severity (as measured by the SDS) and positive expectancies with higher consumption. The interaction of positive and negative expectancies was consistently significantly associated with self-reported functioning across all four GHQ-28 scales (Somatic Concerns, Anxiety, Social Dysfunction and Depression). Specifically, within the context of high positive cannabis expectancy, higher negative expectancy was predictive of more impaired functioning. By contrast, within the context of low positive cannabis expectancy, higher negative expectancy was predictive of better functioning. Conclusions The CEQ is the first cannabis expectancy measure to be validated in a sample of cannabis users in treatment. Negative and positive cannabis expectancy domains were uniquely associated with consumption, dependence severity and self-reported mental health functioning.
Resumo:
A method of eliciting prior distributions for Bayesian models using expert knowledge is proposed. Elicitation is a widely studied problem, from a psychological perspective as well as from a statistical perspective. Here, we are interested in combining opinions from more than one expert using an explicitly model-based approach so that we may account for various sources of variation affecting elicited expert opinions. We use a hierarchical model to achieve this. We apply this approach to two problems. The first problem involves a food risk assessment problem involving modelling dose-response for Listeria monocytogenes contamination of mice. The second concerns the time taken by PhD students to submit their thesis in a particular school.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
The purpose of this work is to validate and automate the use of DYNJAWS; a new component module (CM) in the BEAMnrc Monte Carlo (MC) user code. The DYNJAWS CM simulates dynamic wedges and can be used in three modes; dynamic, step-and-shoot and static. The step-and-shoot and dynamic modes require an additional input file defining the positions of the jaw that constitutes the dynamic wedge, at regular intervals during its motion. A method for automating the generation of the input file is presented which will allow for the more efficient use of the DYNJAWS CM. Wedged profiles have been measured and simulated for 6 and 10 MV photons at three field sizes (5 cm x 5 cm , 10 cm x10 cm and 20 cm x 20 cm), four wedge angles (15, 30, 45 and 60 degrees), at dmax and at 10 cm depth. Results of this study show agreement between the measured and the MC profiles to within 3% of absolute dose or 3 mm distance to agreement for all wedge angles at both energies and depths. The gamma analysis suggests that dynamic mode is more accurate than the step-and-shoot mode. The DYNJAWS CM is an important addition to the BEAMnrc code and will enable the MC verification of patient treatments involving dynamic wedges.
Resumo:
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.