952 resultados para Tunnel junctions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Junctions that mediate excitation-contraction (e-c) coupling are formed between the sarcoplasmic reticulum (SR) and either the surface membrane or the transverse (T) tubules in normal skeletal muscle. Two structural components of the junctions, the feet of the SR and the tetrads of T tubules, have been identified respectively as ryanodine receptors (RyRs, or SR calcium-release channels), and as groups of four dihydropyridine receptors (DHPRs, or voltage sensors of e-c coupling). A targeted mutation (skrrm1) of the gene for skeletal muscle RyRs in mice results in the absence of e-c coupling in homozygous offspring of transgenic parents. The mutant gene is expected to produce no functional RyRs, and we have named the mutant mice "dyspedic" because they lack feet--the cytoplasmic domain of RyRs anchored in the SR membrane. We have examined the development of junctions in skeletal muscle fibers from normal and dyspedic embryos. Surprisingly, despite the absence of RyRs, junctions are formed in dyspedic myotubes, but the junctional gap between the SR and T tubule is narrow, presumably because the feet are missing. Tetrads are also absent from these junctions. The results confirm the identity of RyRs and feet and a major role for RyRs and tetrads in e-c coupling. Since junctions form in the absence of feet and tetrads, coupling of SR to surface membrane and T tubules appears to be mediated by additional proteins, distinct from either RyRs or DHPRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes makes them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance properties of six different types of molecules by suspending individual molecules between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metalliclike conductivity, the individual molecular signature is well expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a scanning tunnel microscope or mechanically controllable break junctions atomic contacts for Au, Pt, and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large number of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on the numbers of atoms forming the chain being even or odd. This behavior is not only observed for the monovalent metal Au, as was predicted, but is also found for the other chain-forming metals, suggesting it to be a universal feature of atomic wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, such as chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, such as a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between tunnel magnetoresistance (TMR) and spin polarization is explored for GaMnAs∕GaAlAs∕GaMnAs structures where the carriers experience strong spin–orbit interactions. TMR is calculated using the Landauer approach. The materials are described in the 6 band k⋅p model which includes spin–orbit interaction. Ferromagnetism is described in the virtual crystal mean field approximations. Our results indicate that TMR is a function of spin polarization and barrier thickness. As a result of the stong spin–orbit interactions, TMR also depends on the the angle between current flow direction and the electrode magnetization. These results compromise the validity of Julliere formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Plan of the roads and main objects on the eastern part of London : as connected with the tunnel excavating under the Thames from Rotherhithe to Wapping, projected by M.I. Brunel, C.E. F.R.S., 1827. It was published by H. Teape & Son in 1827. Scale [ca. 1:48,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the British National Grid coordinate system (British National Grid, Airy Spheroid OSGB (1936) Datum). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, docks, drainage, canals, selected buildings, and more. Includes text, advertisement, and engravings: View of the Thames River -- View of the Interior of the Thames Tunnel -- View of the iron shield compartments for workers. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.