987 resultados para Programming environments
Resumo:
The visual characteristics of urban environments have been changing dramatically with the growth of cities around the world. Protection and enhancement of landscape character in urban environments have been one of the challenges for policy makers in addressing sustainable urban growth. Visual openness and enclosure in urban environments are important attributes in perception of visual space which affect the human interaction with physical space and which can be often modified by new developments. Measuring visual openness in urban areas results in more accurate, reliable, and systematic approach to manage and control visual qualities in growing cities. Recent advances in techniques in geographic information systems (GIS) and survey systems make it feasible to measure and quantify this attribute with a high degree of realism and precision. Previous studies in this field do not take full advantage of these improvements. This paper proposes a method to measure the visual openness and enclosure in a changing urban landscape in Australia, on the Gold Coast, by using the improved functionality in GIS. Using this method, visual openness is calculated and described for all publicly accessible areas in the selected study area. A final map is produced which shows the areas with highest visual openness and visibility to natural landscape resources. The output of this research can be used by planners and decision-makers in managing and controlling views in complex urban landscapes. Also, depending on the availability of GIS data, this method can be applied to any region including non-urban landscapes to help planners and policy-makers manage views and visual qualities.
Resumo:
BACKGROUND Experimental learning, traditionally conducted in on-campus laboratory venues, is the cornerstone of science and engineering education. In order to ensure that engineering graduates are exposed to ‘real-world’ situations and attain the necessary professional skill-sets, as mandated by course accreditation bodies such as Engineers Australia, face-to-face laboratory experimentation with real equipment has been an integral component of traditional engineering education. The online delivery of engineering coursework endeavours to mimic this with remote and simulated laboratory experimentation. To satisfy student and accreditation requirements, the common practice has been to offer equivalent remote and/or simulated laboratory experiments in lieu of the ones delivered, face-to face, on campus. The current implementations of both remote and simulated laboratories tend to be specified with a focus on technical characteristics, instead of pedagogical requirements. This work attempts to redress this situation by developing a framework for the investigation of the suitability of different experimental educational environments to deliver quality teaching and learning. PURPOSE For the tertiary education sector involved with technical or scientific training, a research framework capable of assessing the affordances of laboratory venues is an important aid during the planning, designing and evaluating stages of face-to-face and online (or cyber) environments that facilitate student experimentation. Providing quality experimental learning venues has been identified as one of the distance-education providers’ greatest challenges. DESIGN/METHOD The investigation draws on the expertise of staff at three Australian universities: Swinburne University of Technology (SUT), Curtin University (Curtin) and Queensland University of Technology (QUT). The aim was to analyse video recorded data, in order to identify the occurrences of kikan-shido (a Japanese term meaning ‘between desks instruction’ and over-the-shoulder learning and teaching (OTST/L) events, thereby ascertaining the pedagogical affordances in face-to-face laboratories. RESULTS These will be disseminated at a Master Class presentation at this conference. DISCUSSION Kikan-shido occurrences did reflect on the affordances of the venue. Unlike with other data collection methods, video recorded data and its analysis is repeatable. Participant bias is minimised or even eradicated and researcher bias tempered by enabling re-coding by others. CONCLUSIONS Framework facilitates the identification of experiential face-to-face learning venue affordances. Investigation will continue with on-line venues.
Resumo:
In this paper, we look at the concept of reversibility, that is, negating opposites, counterbalances, and actions that can be reversed. Piaget identified reversibility as an indicator of the ability to reason at a concrete operational level. We investigate to what degree novice programmers manifest the ability to work with this concept of reversibility by providing them with a small piece of code and then asking them to write code that undoes the effect of that code. On testing entire cohorts of students in their first year of learning to program, we found an overwhelming majority of them could not cope with such a concept. We then conducted think aloud studies of novices where we observed them working on this task and analyzed their contrasting abilities to deal with it. The results of this study demonstrate the need for better understanding our students' reasoning abilities, and a teaching model aimed at that level of reality.
Resumo:
We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.
Authorisation management in business process environments: An authorisation model and a policy model
Resumo:
This thesis provides two main contributions. The first one is BP-TRBAC, a unified authorisation model that can support legacy systems as well as business process systems. BP-TRBAC supports specific features that are required by business process environments. BP-TRBAC is designed to be used as an independent enterprise-wide authorisation model, rather than having it as part of the workflow system. It is designed to be the main authorisation model for an organisation. The second contribution is BP-XACML, an authorisation policy language that is designed to represent BPM authorisation policies for business processes. The contribution also includes a policy model for BP-XACML. Using BP-TRBAC as an authorisation model together with BP-XACML as an authorisation policy language will allow an organisation to manage and control authorisation requests from workflow systems and other legacy systems.
Resumo:
Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
This paper presents the programming an FPGA (Field Programmable Gate Array) to emulate the dynamics of DC machines. FPGA allows high speed real time simulation with high precision. The described design includes block diagram representation of DC machine, which contain all arithmetic and logical operations. The real time simulation of the machine in FPGA is controlled by user interfaces they are Keypad interface, LCD display on-line and digital to analog converter. This approach provides emulation of electrical machine by changing the parameters. Separately Exited DC machine implemented and experimental results are presented.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
A new method of specifying the syntax of programming languages, known as hierarchical language specifications (HLS), is proposed. Efficient parallel algorithms for parsing languages generated by HLS are presented. These algorithms run on an exclusive-read exclusive-write parallel random-access machine. They require O(n) processors and O(log2n) time, where n is the length of the string to be parsed. The most important feature of these algorithms is that they do not use a stack.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.
Resumo:
Wheat is one of the major food crops in the world. It is Australia's largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
This case-study examines innovative experimentation with mobile and cloud-based technologies, utilising “Guerrilla Research Tactics” (GRT), as a means of covertly retrieving data from the urban fabric. Originally triggered by participatory action research (Kindon et al., 2008) and unobtrusive research methods (Kellehear, 1993), the potential for GRT lies in its innate ability to offer researchers an alternative, creative approach to data acquisition, whilst simultaneously allowing them to engage with the public, who are active co-creators of knowledge. Key characteristics are political agenda, the unexpected and the unconventional, which allow for an interactive, unique and thought-provoking experience for both researcher and participant.