Decision making in uncertain and changing environments


Autoria(s): Schlag, Karl; Zapechelnyuk, Andriy
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

09/07/2009

Resumo

We consider an agent who has to repeatedly make choices in an uncertainand changing environment, who has full information of the past, who discountsfuture payoffs, but who has no prior. We provide a learning algorithm thatperforms almost as well as the best of a given finite number of experts orbenchmark strategies and does so at any point in time, provided the agentis sufficiently patient. The key is to find the appropriate degree of forgettingdistant past. Standard learning algorithms that treat recent and distant pastequally do not have the sequential epsilon optimality property.

Identificador

http://hdl.handle.net/10230/4795

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Microeconomics #Statistics, Econometrics and Quantitative Methods #adaptive learning #experts #distribution-free #e-optimality #hannan regret
Tipo

info:eu-repo/semantics/workingPaper