929 resultados para Poly(vinyl chloride) (PVC)
Resumo:
In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.
Resumo:
An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In this paper, a new method of fabricating multilayers on a carbon substrate is presented. First, a uniformly charged carbon surface was prepared through molecular design. Then an ultrathin film consisting of layer-pairs of oppositely charged polymeric cationic poly(diallyldimethylammonium chloride) (PDDA) and silicotungstate, SiW12O404- (SiW12), was grown layer-by-layer onto the grafted carbon substrate using a molecular self-assembly technique and an electrochemical method. The technique allows one to prepare highly adherent, dense and smooth films of polyoxometalates with special properties. By combining cyclic voltammetry (CV) and X-ray (XR) reflectometry, it was determined that the average surface density of SiW12 was 2.10 x 10(-10) mol cm(-2), and the thickness increase per adsorption of PDDA-SiW12 was 1.7 +/- 0.2 nm, indicating that the amount of SiW12 anion per one layer adsorption corresponded to a monolayer coverage. Atomic force microscopy (AFM) was also used to examine the surface morphology and determine the grain size distribution and roughness for multilayer films. An increase in root-mean-square (RMS) surface roughness from 7 to 9 Angstrom was observed as the number of layer-pairs in the film increased from 2 to 6. FTIR results showed that the good stability of the multilayer films was due to Coulomb interactions between the SiW12 anion and the polymeric cations PDDA. Moreover, the multilayer films, in acidic aqueous solution, showed good electrocatalytic activity toward the reduction of NO2-, and the catalytic currents increased with increasing the layer numbers of SiW12 adsorption. These characteristics of the multilayer films might find potential applications in the field of sensors and microelectronics devices.
Resumo:
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. The real-time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were also used to study the film assembly, and linear film growth was observed. All the results indicate that the uniform multilayer can be obtained on the poly(ethylenimine)- (PEI-) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by the real-time BIAcore technique; the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1).
Resumo:
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Electroluminescent devices using a ternary europium complex Eu(DBM)(3)(hhpy)(2) (dibenzoylmethane, DBM; hexahydro pyridine, hhpy) as an emitting layer, poly(vinyl-carbazole) (PVK) as a hole-transporting material and tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an electron-transporting material have been fabricated. When only using Eu(DBM)(3)(hhpy)(2) as the emitting layer, luminance of 2.52 cd/m(2) with pure Eu3+ EL emissions from devices is achieved. Introducing a hole transporting material PVK and an electron transporting material 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxidiazole (PBD) in the emitting layer, luminance of 100cd/m(2) is achieved, and the eletroluminescence efficiency is enhanced by about two orders of magnitude. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
Polymer blends of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN) with an acrylonitrile content of about 30 wt % were prepared by means of solution-casting and characterized by virtue of pressure-volume-temperature (PVT) dilatometry. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of the mixing, the volume change of the mixing, and the combinatorial and vacancy entropies of the mixing for the PMMA/SAN system. A new volume-combining rule was used to evaluate the close-packed volume per mer, upsilon*, of the PMMA/SAN blends. The calculated results showed that the new and the original volume-combining rules had a slight influence on the FH interaction parameter, the enthalpy of the mixing, and the combinatorial entropy of the mixing. Moreover, the spinodals and the binodals calculated with the SL theory by means of the new volume-combining rule could coincide with the measured data for the PMMA/SAN system with a lower critical solution temperature, whereas those obtained by means of the original one could not.
Resumo:
Individual hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) molecules under different conditions were elongated using a new atomic force microscope (AFM) based technique-single-molecule force spectroscopy (SMFS). The critical concentration of HM-EHEC for micelle-like clusters at a solid/liquid interface was around 0.8 wt %, which is lower than that in solution. The different mechanical properties of HM-EHEC below and above the critical concentration were displayed on force-extension curves. Through a comparison with unmodified hydroxyethyl cellulose, substituent-induced effects on nanomechanical features of HM-EHEC were investigated. Because of hydrophobic interactions and cooperative binding with the polymer, surfactants such as sodium dodecyl sulfate (SDS) dramatically influence the elastic properties of HM-EHEC below the critical concentration, and further addition of SDS reduces the interactions between the hydrophobic groups and the surfactant.
Resumo:
By fitting the spinodals of poly(vinyl methyl ether)/deuterated polystyrene (PVME/PSD) systems, the adjustable parameters epsilon (12)* and delta epsilon* in the Sanchez-Balasz lattice fluid (SBLF) theory could be determined for different molecular weights. According to these parameters, Flory-Huggins and scattering interaction parameters were calculated for PVME/PSD with different molecular weights by means of the SELF theory. From our calculation, Flory-Huggins and scattering interaction parameters are both Linearly dependent on the reciprocal of the temperature, and almost linearly on the concentration of PSD. Compared with the scattering interaction parameters, the Flory-Huggins interaction parameters decreased more slowly with an increase in the concentration for all three series of blends.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real-time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1)).