985 resultados para OPTICAL BAND-GAP


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the electronic transport properties of a dual-gated bilayer graphene nanodevice via first-principles calculations. We investigate the electric current as a function of gate length and temperature. Under the action of an external electrical field we show that even for gate lengths up 100 angstrom, a nonzero current is exhibited. The results can be explained by the presence of a tunneling regime due the remanescent states in the gap. We also discuss the conditions to reach the charge neutrality point in a system free of defects and extrinsic carrier doping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, electron paramagnetic resonance, photoluminescence (PL) emission, and quantum mechanical calculations were used to observe and understand the structural order-disorder of CaTiO(3), paying special attention to the role of oxygen vacancy. The PL phenomenon at room temperature of CaTiO(3) is directly influenced by the presence of oxygen vacancies that yield structural order-disorder. These oxygen vacancies bonded at Ti and/or Ca induce new electronic states inside the band gap. Ordered and disordered CaTiO(3) was obtained by the polymeric precursor method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190524]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A two-dimensional numerical simulation model of interface states in scanning capacitance microscopy (SCM) measurements of p-n junctions is presented-In the model, amphoteric interface states with two transition energies in the Si band gap are represented as fixed charges to account for their behavior in SCM measurements. The interface states are shown to cause a stretch-out-and a parallel shift of the capacitance-voltage characteristics in the depletion. and neutral regions of p-n junctions, respectively. This explains the discrepancy between - the SCM measurement and simulation near p-n junctions, and thus modeling interface states is crucial for SCM dopant profiling of p-n junctions. (C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[1] In this paper a detailed design, development and performances of a 5 GHz microstrip Yagi antenna, which uses a two-dimensional (2-D) electromagnetic band gap (EBG) structure in the ground plane, are presented. The results indicate that the use of the EBG structure improves the radiation pattern of the antenna. The cross polarization is suppressed by properly choosing the period and dimensions of EBGs. Also, the broadside gain is improved in comparison with the analogous antenna without the EBGs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optimized ZnO:Al/a-pin SixC1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed and the read-out parameters improved. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Data reveals that for sensors with wide band gap doped layers an increase on the image signal optimized to the blue is achieved with a dynamic range of two orders of magnitude, a responsivity of 6 mA W-1 and a sensitivity of 17 muW cm(-2) at 530 nm. The main output characteristics such as image responsivity, resolution, linearity and dynamic range were analyzed under reverse, forward and short circuit modes. The results show that the sensor performance can be optimized in short circuit mode. A trade-off between the scan time and the required resolution is needed since the spot size limits the resolution due to the cross-talk between dark and illuminated regions leading to blurring effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O desenvolvimento dos sistemas de comunicações móveis tem vindo a ser cada vez maior, fazendo com que os sistemas funcionem em várias bandas de operação. Neste sentido, surge a necessidade de desenvolver antenas que superem aquelas já existentes, ao nível das suas propriedades electromagnéticas, para que os sistemas apresentem uma maior qualidade e possam corresponder às exigências inerentes ao desenvolvimento das sociedades. O objectivo desta dissertação de Mestrado é dimensionar, construir e medir uma antena multi-banda para comunicações móveis, com base em estruturas EBG (Electromagnetic Band-Gap) que melhorem o comportamento electromagnético daquelas já existentes, para a banda de frequências de 2.4 GHz e de 5.2 GHz. Começa-se por fazer-se um estudo acerca do estado da arte de estruturas EBG, muito utilizadas em várias áreas, nomeadamente a área das antenas, área sobre a qual esta dissertação assenta. Posteriormente é feita uma breve introdução às antenas microstrip, particularizando de seguida para antenas PIFA e as suas características. Posteriormente é feito o estudo de uma antena PIFA, com e sem a influência de estruturas EBG, para as bandas de 2.4 GHz e 5.2 GHz. Posteriormente são apresentados e comparados resultados das várias antenas. Da análise desses resultados, verifica-se que é possível obter uma antena de baixo perfil com a utilização de estruturas EBG como plano de massa. Além disso, verifica-se também que é possível diminuir a radiação traseira e aumentar a largura de banda. Finalmente, são apresentadas algumas conclusões e várias propostas de trabalho futuro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we show a set of growth conditions, for the two step process, with which the growth of CZTSe is successful and reproducible. The properties of the best CTZSe thin films grown by this method were examined by SEM/EDS, XRD, Raman scattering, AFM/EFM, transmittance and reflectance measurements, photoluminescence (PL) measurements and hot point probe. A broad emission band was observed in the photoluminescence spectrum of the CZTSe thin film. The band gap energy was estimated to be around 1.05 eV at room temperature, using the transmittance and reflectance data, and CZTSe samples show p-type conductivity with the hot point probe. The different characterization techniques show that we could grow single phase CZTSe thin films with our optimized process conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper zinc tin sulfide (CZTS) is a promising Earthabundant thin-film solar cell material; it has an appropriate band gap of ~1.45 eV and a high absorption coefficient. The most efficient CZTS cells tend to be slightly Zn-rich and Cu-poor. However, growing Zn-rich CZTS films can sometimes result in phase decomposition of CZTS into ZnS and Cu2SnS3, which is generally deleterious to solar cell performance. Cubic ZnS is difficult to detect by XRD, due to a similar diffraction pattern. We hypothesize that synchrotron-based extended X-ray absorption fine structure (EXAFS), which is sensitive to local chemical environment, may be able to determine the quantity of ZnS phase in CZTS films by detecting differences in the second-nearest neighbor shell of the Zn atoms. Films of varying stoichiometries, from Zn-rich to Cu-rich (Zn-poor) were examined using the EXAFS technique. Differences in the spectra as a function of Cu/Zn ratio are detected. Linear combination analysis suggests increasing ZnS signal as the CZTS films become more Zn-rich. We demonstrate that the sensitive technique of EXAFS could be used to quantify the amount of ZnS present and provide a guide to crystal growth of highly phase pure films.