884 resultados para Low-power applications


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature T-th can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature T-th variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 mu m CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature T(th)s from 45-120 degrees C with a 5 degrees C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm(2) and power consumption is 3.1 mu A at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A silicon-on-insulator-based thermo-optic waveguide switch integrated with spot size converters is designed and fabricated by inductively coupled plasma reactive ion etching. The device shows good characteristics, including low, insertion loss of 8 +/- 1 dB for wavelength 1530-1580 nm and fast response times of 4.6 As for rising edge and 1.9 mu s for failing edge. The extinction ratios of the two channels are 19.1 and 18 dB, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a wide tuning range CMOS frequency synthesizer for dual-band GPS receiver, which has been fabricated in a standard 0.18-um RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45GHz and 3.14GHz in case of process corner or temperature variation, with a current consumption varying accordingly from 0.8mA to 0.4mA, from a 1.8V supply voltage. The measurement results show that the whole frequency synthesizer costs a very low power consumption of 5.6mW working at L I band with in-band phase noise less than -82dBc/Hz and out-of-band phase noise about -112 dBc/Hz at 1MHz offset from a 3.142GHz carrier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a low-voltage, high performance charge pump circuit suitable for implementation in standard CMOS technologies. The proposed charge pump has been used as a part of the power supply section of fully integrated passive radio frequency identification(RFID) transponder IC, which has been implemented in a 0.35-um CMOS technology with embedded EEPROM offered by Chartered Semiconductor. The proposed DC/DC charge pump can generate stable output for RFID applications with low power dissipation and high pumping efficiency. The analytical model of the voltage multiplier, the comparison with other charge pumps, the simulation results, and the chip testing results are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a wideband Delta Sigma-based fractional-N synthesizer with three integrated quadrature VCOs for multiple-input multiple-output (MIMO) wireless communication applications. It continuously covers a wide range frequency from 0.72GHz to 6.2GHz that is suitable for multiple communication standards. The synthesizer is designed in 0.13-um RE CMOS process. The dual clock full differential multi-modulus divide (MMD) with low power consumption can operate over 9GHz under the worst condition. In the whole range frequency from 0.72GHz to 6.2GHz, the maximal tuning range of the QVCOs reaches 33.09% and their phase noise is -119d8/Hz similar to 124d8/Hz @1MHz. Its current is less than 12mA at a 1.2V voltage supply when it operates at the highest frequency of 6.2GHz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the fabrication process and experimental results of 850-nm oxide-confined vertical cavity surface emitting lasers (VCSELs) fabricated by using dielectric-free approach. The threshold current of 0.4 mA, which corresponds to the threshold current density of 0.5 kA/cm(2), differential resistance of 76 Omega, and maximum output power of more than 5 mW are achieved for the dielectric-free VCSEL with a square oxide aperture size of 9 mu m at room temperature (RT). L-I-V characteristics of the dielectric-free VCSEL are compared with those of conventional VCSEL with the similar aperture size, which indicates the way to realize low-cost, low-power consumption VCSELs with extremely simple process. Preliminary study of the temperature-dependent L-I characteristics and modulation response of the dielectric-free VCSEL are also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%.