757 resultados para Invariants de Riemann
Resumo:
Asymptotic estimates of the norms of orbits of certain operators that commute with the classical Volterra operator V acting on L-P[0,1], with 1 0, but also to operators of the form phi (V), where phi is a holomorphic function at zero. The method to obtain the estimates is based on the fact that the Riemann-Liouville operator as well as the Volterra operator can be related to the Levin-Pfluger theory of holomorphic functions of completely regular growth. Different methods, such as the Denjoy-Carleman theorem, are needed to analyze the behavior of the orbits of I - cV, where c > 0. The results are applied to the study of cyclic properties of phi (V), where phi is a holomorphic function at 0.
Resumo:
A locally convex space X is said to be integrally complete if each continuous mapping f: [0, 1] --> X is Riemann integrable. A criterion for integral completeness is established. Readily verifiable sufficient conditions of integral completeness are proved.
Resumo:
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
Resumo:
The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.
Resumo:
Although coordinated patterns of body movement can be used to communicate action intention, they can also be used to deceive. Often known as deceptive movements, these unpredictable patterns of body movement can give a competitive advantage to an attacker when trying to outwit a defender. In this particular study, we immersed novice and expert rugby players in an interactive virtual rugby environment to understand how the dynamics of deceptive body movement influence a defending player’s decisions about how and when to act. When asked to judge final running direction, expert players who were found to tune into prospective tau-based information specified in the dynamics of ‘honest’ movement signals (Centre of Mass), performed significantly better than novices who tuned into the dynamics of ‘deceptive’ movement signals (upper trunk yaw and out-foot placement) (p<.001). These findings were further corroborated in a second experiment where players were able to move as if to intercept or ‘tackle’ the virtual attacker. An analysis of action responses showed that experts waited significantly longer before initiating movement (p<.001). By waiting longer and picking up more information that would inform about future running direction these experts made significantly fewer errors (p<.05). In this paper we not only present a mathematical model that describes how deception in body-based movement is detected, but we also show how perceptual expertise is manifested in action expertise. We conclude that being able to tune into the ‘honest’ information specifying true running action intention gives a strong competitive advantage.
Resumo:
In this paper, we introduce a macroscopic model for road traffic accidents along highway sections. We discuss the motivation and the derivation of such a model, and we present its mathematical properties. The results are presented by means of examples where a section of a crowded one-way highway contains in the middle a cluster of drivers whose dynamics are prone to road traffic accidents. We discuss the coupling conditions and present some existence results of weak solutions to the associated Riemann Problems. Furthermore, we illustrate some features of the proposed model through some numerical simulations. © The authors 2012.
Resumo:
Many modern networks are \emph{reconfigurable}, in the sense that the topology of the network can be changed by the nodes in the network. For example, peer-to-peer, wireless and ad-hoc networks are reconfigurable. More generally, many social networks, such as a company's organizational chart; infrastructure networks, such as an airline's transportation network; and biological networks, such as the human brain, are also reconfigurable. Modern reconfigurable networks have a complexity unprecedented in the history of engineering, resembling more a dynamic and evolving living animal rather than a structure of steel designed from a blueprint. Unfortunately, our mathematical and algorithmic tools have not yet developed enough to handle this complexity and fully exploit the flexibility of these networks. We believe that it is no longer possible to build networks that are scalable and never have node failures. Instead, these networks should be able to admit small, and maybe, periodic failures and still recover like skin heals from a cut. This process, where the network can recover itself by maintaining key invariants in response to attack by a powerful adversary is what we call \emph{self-healing}. Here, we present several fast and provably good distributed algorithms for self-healing in reconfigurable dynamic networks. Each of these algorithms have different properties, a different set of gaurantees and limitations. We also discuss future directions and theoretical questions we would like to answer. %in the final dissertation that this document is proposed to lead to.
Resumo:
Modern networks are large, highly complex and dynamic. Add to that the mobility of the agents comprising many of these networks. It is difficult or even impossible for such systems to be managed centrally in an efficient manner. It is imperative for such systems to attain a degree of self-management. Self-healing i.e. the capability of a system in a good state to recover to another good state in face of an attack, is desirable for such systems. In this paper, we discuss the self-healing model for dynamic reconfigurable systems. In this model, an omniscient adversary inserts or deletes nodes from a network and the algorithm responds by adding a limited number of edges in order to maintain invariants of the network. We look at some of the results in this model and argue for their applicability and further extensions of the results and the model. We also look at some of the techniques we have used in our earlier work, in particular, we look at the idea of maintaining virtual graphs mapped over the existing network and assert that this may be a useful technique to use in many problem domains.
Resumo:
Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.
Resumo:
Nesta tese são estabelecidas novas propriedades espectrais de grafos com estruturas específicas, como sejam os grafos separados em cliques e independentes e grafos duplamente separados em independentes, ou ainda grafos com conjuntos (κ,τ)-regulares. Alguns invariantes dos grafos separados em cliques e independentes são estudados, tendo como objectivo limitar o maior valor próprio do espectro Laplaciano sem sinal. A técnica do valor próprio é aplicada para obter alguns majorantes e minorantes do índice do espectro Laplaciano sem sinal dos grafos separados em cliques e independentes bem como sobre o índice dos grafos duplamente separados em independentes. São fornecidos alguns resultados computacionais de modo a obter uma melhor percepção da qualidade desses mesmos extremos. Estudamos igualmente os grafos com um conjunto (κ,τ)-regular que induz uma estrela complementar para um valor próprio não-principal $. Além disso, é mostrado que $=κ-τ. Usando uma abordagem baseada nos grafos estrela complementares construímos, em alguns casos, os respectivos grafos maximais. Uma caracterização dos grafos separados em cliques e independentes que envolve o índice e as entradas do vector principal é apresentada tal como um majorante do número da estabilidade dum grafo conexo.
Boundary value problems for analytic functions in the class of Cauchy-type integrals with density in
Resumo:
We study the Riemann boundary value problem , for analytic functions in the class of analytic functions represented by the Cauchy-type integrals with density in the spaces with variable exponent. We consider both the case when the coefficient is piecewise continuous and it may be of a more general nature, admitting its oscillation. The explicit formulas for solutions in the variable exponent setting are given. The related singular integral equations in the same setting are also investigated. As an application there is derived some extension of the Szegö-Helson theorem to the case of variable exponents.