Infinite Dimensional Banach spaces of functions with nonlinear properties


Autoria(s): Grecu, Bogdan; Garcia, D.; Maestre, M.; Seoane, J.
Data(s)

01/01/2010

Resumo

The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/infinite-dimensional-banach-spaces-of-functions-with-nonlinear-properties(bb8d6011-300a-4d9d-96f5-5a239ca71859).html

http://dx.doi.org/10.1002/mana.200610833

http://pure.qub.ac.uk/ws/files/790631/MN-GarciaGrecuMaestreSeoane.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Grecu , B , Garcia , D , Maestre , M & Seoane , J 2010 , ' Infinite Dimensional Banach spaces of functions with nonlinear properties ' Mathematische Nachrichten , vol 283 (1) , no. 5 , pp. 1-9 . DOI: 10.1002/mana.200610833

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all)
Tipo

article