Infinite Dimensional Banach spaces of functions with nonlinear properties
Data(s) |
01/01/2010
|
---|---|
Resumo |
The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function. |
Formato |
application/pdf |
Identificador |
http://dx.doi.org/10.1002/mana.200610833 http://pure.qub.ac.uk/ws/files/790631/MN-GarciaGrecuMaestreSeoane.pdf |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Grecu , B , Garcia , D , Maestre , M & Seoane , J 2010 , ' Infinite Dimensional Banach spaces of functions with nonlinear properties ' Mathematische Nachrichten , vol 283 (1) , no. 5 , pp. 1-9 . DOI: 10.1002/mana.200610833 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all) |
Tipo |
article |