917 resultados para Geometría diferencial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se propone una serie de ejercicios enfocados a fomentar una enseñanza más amena de la geometría para los alumnos de bachillerato, mediante la realización de ejercicios a modo de juegos, como los rompecabezas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presenta uno de los caminos que un individuo puede seguir para lograr los objetivos del diseño de forma secuencial. Se desarrollan las especificaciones de las distintas etapas que el diseñador desarrolla en el proceso del diseño. Con todo ello, se plantea que las gráficas, como parte del dibujo técnico y la geometría descriptiva, son herramientas esenciales en todas las fases del proceso, desde el concepto inicial hasta la realización final de los planos de trabajo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actualmente se asiste a grandes cambios en la sociedad, sin embargo, es necesario conservar parte del mundo pasado para tener experiencias con las que interpretar el mundo actual. Estos cambios también afectan a las necesidades matemáticas de la sociedad, y en consecuencia en su vertiente educativa. En la geometría existen muchos elementos que deben se mantenidos pesar de los diferentes avances y cambios, que podrían hacer pensar en la pérdida de su utilidad. En el artículo se muestran elementos matemáticos que resultan interesantes, no sólo por su conexión con los conocimientos matemáticos tradicionales sino también por la relación directa con otros campos del saber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la revista

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parte de la idea de que la conexión entre dos enseñanzas depende del contenido, del método y de la finalidad de esas enseñanzas. La enseñanza de la Geometría y la Física tienen como finalidad recrear un saber no de transmitirlo, se centran en la formación más que en la información e interesa más asimilar el método científico que ampliar conocimientos. La observación y la experimentación son indispensables en la enseñanza de la Física y en la Escuela Primaria el estudio del espacio euclidiano. Después de esta exposición preliminar se exponen detalladamente las conexiones en el procedimiento; en los resultados; en la expresión Introduce el concepto moderno de Geografía, las características de su enseñanza y enumera los fines y los medios para llevarla a cabo. Expone cómo debe ser la evaluación del alumno para eliminar la subjetividad del maestro en la calificación de los ejercicios y estimular al alumno para que estudie de una forma más comprensiva, racional y efectiva y cómo esto se consigue con las pruebas objetivas. Explica los tipos de pruebas y termina con ejemplos de pruebas objetivas de Geografía que tienen la Geometría y la Física, aparte de citar algunas otras conexiones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defiende la importancia de las conexiones entre la geometría y la física en la escuela primaria y lo justifica con criterios científicos, sociológicos, psicológicos, paidológicos, didácticos y humanos. Analiza los problemas fundamentales para lograr ese objetivo: preparación geométrica, refiriéndose a que el conocimiento de la Física nunca puede preceder al geométrico; falta de textos adecuados para su enseñanza; madurez para discernir: percibe la relación entre elementos siempre que ésta sea lógica, clara y precisa; relación de la conexión. Concluye con un ejemplo práctico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se desarrollan los conceptos de matemática moderna, ciencia iniciada en el siglo XIX, sus principales aportaciones y sus principales ideas, su rápida evolución y el gran desarrollo de sus distintas ramas; así como, también, el de la geometría moderna. En último lugar, se presenta una iniciación al estudio de los vectores. Se destacan los fundamentos de esta nueva geometría abstracta, descubierta en el siglo XIX y concebida como un auténtico sistema, y la importancia de la geometría analítica de Descartes, en cuanto que supuso los comienzos de la matemática moderna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilización del poliestireno expandido para el aprendizaje de la geometría. Se pretende que los alumnos tengan por la vía sensitiva un conocimiento de las formas geométricas. Se proponen una serie de ejercicios a realizar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crónica sobre los actos acontecidos durante el primer cursillo de educación diferencial, organizado por el Instituto Municipal de Educación del Ayuntamiento de Madrid, entre octubre y diciembre de 1959. El tema principal sobre el que se centraba el cursillo era 'hacia la preparación e información de profesorado y de personal técnico para la educación y tratamiento de los alumnos que, sin perturbaciones acusadas, constituían un lastre en la marcha habitual de la escuela'. Se define lo que se conoce por educación diferencial. Seguidamente, se exponen los temas que comprende el cursillo. También se analiza el tema de la personalidad del niño. La educación física, la angustia y la ansiedad, son otros de los temas que se trataron en el curso. En el acto de clausura, el Director del Instituto Municipal de Educación, pronunció un discurso en el que señaló la misión de dicho organismo como la de ser un centro de experimentación al servicio de la educación diferencial y también de las terapias de la conducta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planificar la enseñanza de la Matemática en la universidad, ciclo 1, y elaborar modelos para las pruebas de acceso. Conocer el uso de la Matemática en la práctica laboral. Determinar sistema de acceso a la universidad, contenidos matemáticos de COU y pruebas matemáticas de Selectividad, más idóneos, mediante un análisis comparado con otros países. Elaborar estudios introductorios de los principales temas matemáticos, que sirvan de ayuda a un profesorado heterogéneo. Número indeterminado de licenciados en Ingeniería, Física, Química, Biología, Medicina, Farmacia, Sociología, Economía, Psicología y Pedagogía en activo. Sistema de acceso a la universidad, pruebas y programas matemáticos en varios países. Contenidos matemáticos usuales en COU y la universidad. Se consideran las nociones matemáticas empleadas por la muestra en su práctica laboral. Sistema de acceso a la Universidad vigentes en Francia, RDA, Suiza, Austria, Gran Bretaña y EEUU. Contenidos matemáticos de los programas de las pruebas de acceso de varios países y España. Tipo de pruebas matemáticas empleado en varios países. Esta metodología: visión introductoria, enfoque histórico y alternativo y apoyo bibliográfico para cada contenido. Se detalla qué Matemáticas emplean los profesionales. Cálculo y análisis se usan bastante en todo sector laboral, álgebra y geometría, sobre todo en Ingenieria, por su relación con la tecnología, probabilidad y estadística, las más usadas, en carreras experimentales. Se detallan sistemas de acceso, pruebas y contenidos matemáticos en varios países, se recomienda que los examenes sean independientes para cada materia y los tribunales, nombrados por las universidades, tengan un representante del centro escolar. Las universidades dicten normas de acceso sin considerar expedientes académicos, el programa matemático sea más amplio y menos universitario, con métodos numéricos sencillos y aplicaciones prácticas. El examen consta de 2 partes, multirrespuesta y problemas, que evalúen objetivos de conocimiento, comprensión y aplicación y de síntesis y análisis. Se elaboraron 10 monografías: no reales, sucesiones y series. Convergencia y continuidad, espacios métricos y estructuras topológicas y algebraicas, cálculo diferencial, optimización, estructuras del álgebra, polinomios, álgebra lineal, geometría, probabilidad, estadística. Se han elaborado tres informes cualitativos, modalidades existentes en las pruebas de acceso a la universidad, contenidos de esas pruebas y enfoque didáctico que debe darse a las asignaturas matemáticas en el primer ciclo universitario, y un estudio de campo, cuantificación del uso de diversos tópicos matemáticos por parte de los titulados superiores, en la docencia, en la investigación y en el ejercicio profesional, como contribución a la mejora del nivel didáctico de las asignaturas de Matemáticas que se imparten en la universidad y del actual sistema de acceso a la Enseñanza Superior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elaborar materiales para un currículo de geometría para la formación de maestros, que pongan de manifiesto: a) La relación entre la Geometría y el espacio físico. b) La relación entre la Geometría y el arte. c) La Geometría como fuente para desarrollar las habilidades matemáticas de clasificación, definición, generalización, elaboración de estrategias, predicción, prueba. d) Elaborar materiales de tal modo que sean apropiados para enseñar/aprender reflexionando. e) Establecer las tendencias actuales en la enseñanza de la Geometría y sus principios teóricos. f) Examinar la documentación publicada al respecto y la dedicada a ofrecer actividades modélicas, propuestas o ya experimentadas. Material didáctico sobre Geometría. 1) Definición del modelo de currículum. 2) Selección de las partes del currículum que van a ser tratadas en extenso. 3) Elaboración de materiales concretos para esas partes. Observación fenomenológica y reflexión de los alumnos de la Escuela de Profesores de EGB y de maestros en ejercicio, en el examen de los materiales didácticos para enseñar Geometría en la EGB. Los alumnos aprenden a enseñar Geometría. Se realizó a una revisión minuciosa de la literatura especializada en Geometría. Se extrajo esquema conceptual que organiza los principales curricula posibles. Se revisaron los programas del Ministerio de Educación, que se tomaron en cuenta como referencia de niveles. La selección de las partes del currículo se realizó en función del tiempo disponible para el desarrollo de la materia, la concepción del modelo y los gustos del autor. Se planteó la organización interna de los materiales y el proceso de su elaboración, experimentación y mejora. Tras su análisis y estudio, los materiales planteados originariamente, sufrieron modificaciones. Fueron presentados en la Escola d'Estiu, en Valencia, dónde se trataron los criterios de organización del material, trabajando con esquemas y preguntas relativos a cada unidad . Los Anexos que se presentan son un compendio de conocimientos teóricos y actividades que los alumnos de la Escuela de Profesores han revisado y completado. El Anexo I, se constituyó como material presentado en la 'I Reunión de la Sociedad Andaluza de Profesores de Matemáticas', que recoge las líneas fundamentales que estructuran los materiales y que se ampliaron con las conclusiones extraídas de dicha reunión. Los materiales que forman el Anexo II, se presentaron en un cursillo de perfeccionamiento del profesorado de EGB, en los que los alumnos encontraron mayor dificultad en el contenido de las actividades. Son reelaboración del Anexo III que es el que se presenta más completo de todos.