952 resultados para Electronic structure and electrical properties of surfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the preparation and characterization of (SnO2) thin films doped with 7 mol% Sb2O3. The films were prepared by the polymeric precursor method, and deposited by spin-coating, all of them were deposited on amorphous silica substrate. Then, we have studied the thickness effect on the microstrutural, optical and electric properties of these samples. The microstructural characterization was carried out by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The electrical resistivity measurements were obtained by the van der Pauw four-probe method. UV-visible spectroscopy and ellipsometry were carried out for the optical characterization. The films present nanometric grains in the order of 13 nm, and low roughness. The electrical resistivity decreased with the increase of the film thickness and the smallest measured value was 6.5 x 10(-3) Omega cm for the 988 nm thick film. The samples displayed a high transmittance value of 80% in the visible region. The obtained results show that the polymeric precursor method is effective for the TCOs manufacturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and the structural and magnetic characterization of two new compounds: dibromobis-(pdmp)copper(II), CuBr2C22H24N4 (1), and dichlorobis(pdmp)copper(II), CuCl2C22H24N4 (2), where pdmp = 1-phenyl-3,5-dimethylpyrazole. The structures were refined by full-matrix least-squares techniques to R1 = 0.0620 and 0.0777, respectively. Compound 1 belongs to the space group P21/n with a = 8.165(5) Å, b = 10.432(3) Å, c = 13.385(4) Å, β = 100.12(4)̊, and Z = 2. Compound 2 belongs to the space group P21/c with a = 8.379(2) Å, b = 22.630(2) Å, c = 12.256(2) Å, β= 98.43(3)°, and Z = 4. It has the same molecular formula as a compound reported previously but a different crystal structure. Detailed single-crystal EPR measurements were performed for single-crystal samples of 1 and 2 at 9 and 35 GHz and at room temperature. The positions and line widths of the EPR lines were measured as a function of the magnetic field orientation in three orthogonal planes. The data were used to study the electronic properties of the copper ions and to evaluate the exchange interactions between them. Our results are discussed in terms of the electronic pathways for superexchange between copper ions, which are provided by the stacking of pyrazole and phenyl rings of neighboring molecules and by hydrogen-halogen bonds. © 1999 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate electrical properties of InAs/InP semiconductor nanostructures by conductive atomic force microscopy (C-AFM) and current measurements at low temperatures in processed devices. Different conductances and threshold voltages for current onset were observed for each type of nanostructure. In particular, the extremity of the wire could be compared to a dot with similar dimensions. The processed devices were used in order to access the in-plane conductance of an assembly of a reduced number of nanostructures. Here, fluctuations on I-V curves at low temperatures (<40 K) were observed. At these low temperatures and for a suitable range of applied voltages, random telegraph noise (RTN) in the current was observed for devices with dots. These fluctuations can be associated to electrons trapped in dots, as suggested by numerical simulations. A crossover from a semiconductor-like to a metallic transport behavior is also observed for similar parameters. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi 4Ti 3- xNbxO 12 (BITNb) samples, with × ranging from 0 to 0.40 were obtained using a polymeric precursor solution. Rietveld analyses confirmed that the powders crystallize in an orthorhombic structure free of secondary phases with space group Fmmm. Raman analysis evidenced a sharp increase in the bands intensity located at 129 cm -1 and 190 cm -1 due the lattice distortion in BIT02Nb and BIT04Nb compositions. UV-vis spectra indicated that addition of niobium causes a reduction of defects in the BIT lattice due the suppression of oxygen vacancies located at BO-6 octahedral. Size and morphology of particles as well as electrical behavior of BIT ceramics were affected by addition of donor dopant. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning and was investigated by piezoresponse force microscopy (PFM). PFM measurements revealed a decrease in piezoelectric response with increasing Nb concentration originating from a reduced polarizability along the a-axis. High spontaneous polarization is noted for the less doped sample due the reduction of strain energy and pin charged defects after niobium addition. Copyright © 2010 American Scientific Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate Pb(Zr 0.50Ti 0.50)O 3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100) orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. Results suggest that Schottky barriers and/or mechanical coupling near the filmsubstrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.