981 resultados para Electric field measurement
Resumo:
Quantum-confined Stark effects are investigated theoretically in GaAs/AlxGa1-xAs quantum wires formed in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the effective mass envelope function theory in the presence of electric field. The binding energies of excitons are also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of quantum wire along the electric field and another factor arises from the electric-field-induced change of the Coulomb interaction. The numerical results are compared with the recent experiment measurement.
Resumo:
We use a polarizer to investigate quantum-well infrared absorption, and report experimental results as follows. The intrasubband transition was observed in GaAs/AlxGa1-xAs multiple quantum wells (MQWs) when the incident infrared radiation (IR) is polarized parallel to the MQW plane. According to the selection rule, an intrasubband transition is forbidden. Up to now, most studies have only observed the intersubband transition between two states with opposite parity. However, our experiment shows not only the intersubband transitions, but also the intrasubband transitions. In our study, we also found that for light doping in the well (4x10(18) cm(-3)), the intrasubband transition occurs only in the lowest subband, while for the heavy doping (8x10(18) cm(-3)), such a transition occurs not only in the lowest subband, but also in the first excited one, because of the electron subband filling. Further experimental results show a linear dependence of the intrasubband transition frequency on the root of the well doping density. These data are in good agreement with our numerical results. Thus we strongly suggest that such a transition can be attributed to plasma oscillation. Conversely, when the incident IR is polarized perpendicular to the MQW plane, intersubband-transition-induced signals appear, while the intrasubband-transition-induced spectra disappear for both light and heavy well dopings. A depolarization blueshift was also taken into account to evaluate the intersubband transition spectra at different well dopings. Furthermore, we performed a deep-level transient spectroscopy (DLTS) measurement to determine the subband energies at different well dopings. A good agreement between DLTS, infrared absorption, and numerical calculation was obtained. In our experiment, two important phenomena are noteworthy: (1) The polarized absorbance is one order of magnitude higher than the unpolarized spectra. This puzzling result is well explained in detail. (2) When the IR, polarized perpendicular to the well plane, normally irradiates the 45 degrees-beveled edge of the samples, we only observed intersubband transition spectra. However, the intrasubband transition signals caused by the in-plane electric-field component are significantly absent. The reason is that such in-plane electric-field components can cancel each other out everywhere during the light propagating in the samples. The spectral widths of bound-to-bound and bound-to-continuum transitions were also discussed, and quantitatively compared to the relaxation time tau, which is deduced from the electron mobility. The relaxation times deduced from spectral widths of bound-to-bound and bound-to-continuum transitions are also discussed, and quantitatively compared to the relaxation time deduced from electron mobility. [S0163-1829(98)01912-2].
Resumo:
Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.
Resumo:
An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.
Resumo:
Perpendicular transport in a specially designed, doped and weakly coupled GaAs/AlAs superlattice is investigated. A linear current-voltage at a bias within +/-10 mV and a negative differential velocity effect at a bias of about +/-40 mV are observed at low temperatures. The miniband conductance near zero electric field is studied as a function of temperature. It is found that the measured conductance increases slightly as the temperature increases to about 30 K, decreases as the temperature rises from 30 K to 70 K, and then increases strongly above 70 K, indicating the existence of a mobility gap.
Resumo:
We have investigated the influence of transverse magnetic field B up to 14 T at 1.6 K on the tunneling processes of electric field domains in doped weakly coupled GaAs/AlAs superlattices. Three regimes, i.e, stable field domains, current self-sustained oscillations and averaged field distribution are successively observed with increasing B. The mechanisms of switching-over among these regimes are due to B-induced modification of the dependence of the effective electron drift velocity on electric field. The simulated calculation gives a good agreement with the observed experimental results. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for non-uniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multiplexed-profile fitting method. Second harmonic (2f) signal of eight H2O transitions features near 7,170 cm(-1) are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.
Resumo:
Well-aligned TiO2/Ti nanotube arrays were synthesized by anodic oxidation of titanium foil in 0.5 wt.% HF in various anoclization voltages. The images of filed emission scanning electron microscopy indicate that the nanotubes structure parameters, such as diameter, wall thickness and density, can be controlled by adjusting the anoclization voltage. The peaks at 25.3 degrees and 48.0 degrees of X-ray diffraction pattern illuminate that the TiO2 nanotube arrays annealed at 500 degrees C are mainly in anatase phase. The filed emission (FE) properties of the samples were investigated. A turn-on electric field 7.8 V/mu m, a field enhancement factors approximately 870 and a highest FE current density 3.4 mA/cm(2) were obtained. The emission current (2.3 mA/cm(2) at 18.8 V/mu m) was quite stable within 480 min. The results show that the FE properties of TiO2/Ti have much relation to the structure parameters.
Resumo:
The research of dipole source localization has great significance in both clinical research and applications. For example, the EEG recording from the scalp is widely used for the localization of sources of electrical activity in the brain. This paper presents a closed formula that describes the electric field of dipoles at arbitrary position, which is a linear transformer called the transfer matrix. The expression of transfer matrix and its many useful characteristics are given, which can be used for the analysis of the electrical fields of dipoles. This paper also presents the closed formula for determining the location and magnitude of single dipole or multi-dipoles according to its electrical field distribution. A calculation result for a single dipole shows that the dipole will be located at the midpoint of a line segment if there are equivalent fields at its two ends.
Resumo:
The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by ail electric field and deflected 180 degrees by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8 x 10(-6) For Delta m/m was achieved by using this time detector in a pilot mass measurement experiment.
Resumo:
An organic thin-film transistor (OTFT) having a low-dielectric polymer layer between gate insulator and source/drain electrodes is investigated. Copper phthalocyanine (CuPc), a well-known organic semiconductor, is used as an active layer to test performance of the device. Compared with bottom-contact devices, leakage current is reduced by roughly one order of magnitude, and on-state current is enhanced by almost one order of magnitude. The performance of the device is almost the same as that of a top-contact device. The low-dielectric polymer may play two roles to improve OTFT performance. One is that this structure influences electric-field distribution between source/drain electrodes and semiconductor and enhances charge injection. The other is that the polymer influences growth behavior of CuPc thin films and enhances physical connection between source/drain electrodes and semiconductor channel. Advantages of the OTFT having bottom-contact structure make it useful for integrated plastic electronic devices.
Resumo:
An alignment study of a liquid crystalline copolyether TPP-7/11(5/5) thin films has been carried out in a 10 kV . cm(-1) electrostatic field parallel to the thin film surface normal. This copolyether possesses a negative dielectric anisotropy. The chain molecules are homogeneously aligned in the electric field and they form two-dimensionally ordered lamellae in a tilted columnar phase when the samples were cooled to room temperature. It is observed that the chain molecules are splayed to form bent lamellae and the chain direction is perpendicular to the tangential direction of the lamellar surfaces. These lamellae thus become replicas of the chain orientation, Due to the flexoelectric effect and density fluctuation on the thin film free surface, disclinations having topological strength s = 1, c = pi /4 and defect walls form. These s = 1 disclinations possesses both left- and right-handednesses. Discussion of the defect formations have been attempted.
Resumo:
A liquid crystalline (LC) copolyether has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,11-dibromoundecane with a 50/50 (both in %) equal composition of the 7- and 11-methylene monomers [coTPP-7/11(5/5)]. A mono-domain with a homeotropic alignment can be induced by a thin film surface in the LC phase. When an electrostatic field is applied to the surface-induced mono-domains parallel to the thin film surface normal, the molecular alignment undergoes a change from the homeotropic to uniaxial homogeneous arrangement. However, when the field is applied to a direction perpendicular to the thin film surface normal. the molecular alignment is about 10 degrees -tilt with respect to the homeotropic alignment toward the a*-axis. This is because the permanent dipole moment of the copolyether is not right vertical to the molecular direction. The calculation of molecular dipoles indicates that the permanent dipole moment of this copolyether is about 70 degrees away from the molecular axis, which leads to a negative dielectric anisotropy. It is speculated that the 10 degrees- rather than 20 degrees -tilt is due to a balance between the alignment induced by the electrostatic field and the surface. In the electrostatic field, molecules are subjected to a torque tau, which is determined by the permanent dipole moment P and the electrostatic field E: tau = P x E. The molecular realignment in both parallel and perpendicular directions to the thin film surface normal is determined by satisfying the condition of tau = P x E = 0. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The difference between the Mossbauer parameters for EuBa2Cu3O7-x with dc electric current and those without dc electric current at 83 K has been observed. The change in isomer shift, electric quadrupole splitting and the asymmetry parameter of the electric field gradient at the Eu-151 nucleus may be caused by the movement of a mass of conduction electrons along a certain direction in the EuBa2Cu3O7-x crystal with a layered structure.
Resumo:
We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.