884 resultados para Bridging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title compound, [C8H11LiO4(H2O)2]n the distorted tetrahadral LiO4 coordination sphere comprises two water molecules and two carboxyl O-donors from separate bridging cis-2-carboxycyclohexane-1-carboxylate monoanions [Li-O range, 1.887(4)-1.946(3)A], giving chain substructures which extend along (010). Water-water and water-carboxyl O-H...O hydrogen bonds stabilize these chain structures and provide inter-chain links, resulting in a two-dimensional layered structure extending across (011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current economy, knowledge has been recognized to be a valuable organisational asset, a crucial factor that aids organisations to succeed in highly competitive environments. Many organisations have begun projects and special initiatives aimed at fostering better knowledge sharing amongst their employees. Not surprisingly, information technology (IT) has been a central element of many of these projects and initiatives, as the potential of emerging information technologies such as Web 2.0 for enabling the process of managing organisational knowledge is recognised. This technology could be used as a collaborative system for knowledge management (KM) within enterprises. Enterprise 2.0 is the application of Web 2.0 in an organisational context. Enterprise 2.0 technologies are web-based social software that facilitate collaboration, communication and information flow in a bidirectional manner: an essential aspect of organisational knowledge management. This chapter explains how Enterprise 2.0 technologies (Web 2.0 technologies within organisations) can support knowledge management. The chapter also explores how such technologies support the codifying (technology-centred) and social network (people-centred) approaches of KM, towards bridging the current gap between these two approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Society faces an unprecedented global education challenge to equip professionals with the knowledge and skills to address emerging 21st Century challenges, spanning climate change mitigation through to adaptation measures to deal with issues such as temperature and sea level rise, and diminishing fresh water and fossil fuel reserves. This paper discusses the potential for systemic and synergistic integration of curriculum with campus operations to accelerate curriculum renewal towards ESD, drawing on the authors' experiences within engineering education. The paper begins by a providing a brief overview of the need for timely curriculum renewal towards ESD in tertiary education. The paper then highlights some examples of academic barriers that need to be overcome for integration efforts to be successful, and opportunities for promoting the benefits of such integration. The paper concludes by discussing the rational for planning green campus initiatives within a larger system of curriculum renewal considerations, including awareness raising and developing a common understanding, identifying and mapping graduate attributes, curriculum auditing, content development and strategic renewal, and bridging and outreach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines nascent entrepreneurship by comparing individuals engaged in nascent activities (n=380) with a control group (n=608), after screening a sample from the general population (n=30,427). The study then follows the developmental process of nascent entrepreneurs for 18 months. Bridging and bonding social capital, consisting of both strong and weak ties, was a robust predictor for nascent entrepreneurs, as well as for advancing through the start-up process. With regard to outcomes like first sale or showing a profit, only one aspect of social capital, viz. being a member of a business network, had a statistically significant positive effect. The study supports human capital in predicting entry into nascent entrepreneurship, but only weakly for carrying the start-up process towards successful completion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is influenced by the scaffold architecture. Copyright © 2012 American Society for Bone and Mineral Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-established therapies for bone defects are restricted to bone grafts which face significant disadvantages (limited availability, donor site morbidity, insufficient integration). Therefore, the objective was to develop an alternative approach investigating the regenerative potential of medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) and silk-hydroxyapatite (silk-HA) scaffolds. Critical sized ovine tibial defects were created and stabilized. Defects were left untreated, reconstructed with autologous bone grafts (ABG) and mPCL-TCP or silk-HA scaffolds. Animals were observed for 12 weeks. X-ray analysis, torsion testing and quantitative computed tomography (CT) analyses were performed. Radiological analysis confirmed the critical nature of the defects. Full defect bridging occurred in the autograft and partial bridging in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaffolds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05) and CT analysis a significantly higher amount of bone formation for the ABG group when compared to the silk-HA group. No significant difference was determined between the ABG and mPCL-TCP groups. The results of this study suggest that mPCL-TCP scaffolds combined can serve as an alternative to autologous bone grafting in long bone defect regeneration. The combination of mPCL-TCP with osteogenic cells or growth factors represents an attractive means to further enhance bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n (1) and [Cs(C6H6NO3S)]n (2) and have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving a number of bidentate chelate sulfonate-O,O’-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title compound, [Mg(H2O)2(C8H6FO3)2]n(0.4H2O)n, slightly distorted octahedral MgO6 complex units have crystallographic inversion symmetry, the coordination polyhedron comprising two trans-related water molecules and four carboxyl O-atom donors, two of which are bridging. Within the two-dimensional complex polymer which is parallel to (100), the coordinating water molecules form intermolecular O---H...O hydrogen-bonds with carboxylate and phenoxy O-atom acceptors, as well as with the partial-occupancy solvent water molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title complex [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. Intra-unit O-H...O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proving security of cryptographic schemes, which normally are short algorithms, has been known to be time-consuming and easy to get wrong. Using computers to analyse their security can help to solve the problem. This thesis focuses on methods of using computers to verify security of such schemes in cryptographic models. The contributions of this thesis to automated security proofs of cryptographic schemes can be divided into two groups: indirect and direct techniques. Regarding indirect ones, we propose a technique to verify the security of public-key-based key exchange protocols. Security of such protocols has been able to be proved automatically using an existing tool, but in a noncryptographic model. We show that under some conditions, security in that non-cryptographic model implies security in a common cryptographic one, the Bellare-Rogaway model [11]. The implication enables one to use that existing tool, which was designed to work with a different type of model, in order to achieve security proofs of public-key-based key exchange protocols in a cryptographic model. For direct techniques, we have two contributions. The first is a tool to verify Diffie-Hellmanbased key exchange protocols. In that work, we design a simple programming language for specifying Diffie-Hellman-based key exchange algorithms. The language has a semantics based on a cryptographic model, the Bellare-Rogaway model [11]. From the semantics, we build a Hoare-style logic which allows us to reason about the security of a key exchange algorithm, specified as a pair of initiator and responder programs. The other contribution to the direct technique line is on automated proofs for computational indistinguishability. Unlike the two other contributions, this one does not treat a fixed class of protocols. We construct a generic formalism which allows one to model the security problem of a variety of classes of cryptographic schemes as the indistinguishability between two pieces of information. We also design and implement an algorithm for solving indistinguishability problems. Compared to the two other works, this one covers significantly more types of schemes, but consequently, it can verify only weaker forms of security.