964 resultados para Analog
Resumo:
Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse anda femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS. (C) 2010 American Institute of Physics.
Resumo:
Static characteristics of an analog-to-digital converter (ADC) can be directly determined from the histogram-based quasi-static approach by measuring the ADC output when excited by an ideal ramp/triangular signal of sufficiently low frequency. This approach requires only a fraction of time compared to the conventional dc voltage test, is straightforward, is easy to implement, and, in principle, is an accepted method as per the revised IEEE 1057. However, the only drawback is that ramp signal sources are not ideal. Thus, the nonlinearity present in the ramp signal gets superimposed on the measured ADC characteristics, which renders them, as such, unusable. In recent years, some solutions have been proposed to alleviate this problem by devising means to eliminate the contribution of signal source nonlinearity. Alternatively, a straightforward step would be to get rid of the ramp signal nonlinearity before it is applied to the ADC. Driven by this logic, this paper describes a simple method about using a nonlinear ramp signal, but yet causing little influence on the measured ADC static characteristics. Such a thing is possible because even in a nonideal ramp, there exist regions or segments that are nearly linear. Therefore, the task, essentially, is to identify these near-linear regions in a given source and employ them to test the ADC, with a suitable amplitude to match the ADC full-scale voltage range. Implementation of this method reveals that a significant reduction in the influence of source nonlinearity can be achieved. Simulation and experimental results on 8- and 10-bit ADCs are presented to demonstrate its applicability.
Resumo:
A two-channel boxcar integrator with an analog to digital converter was constructed using integrated circuits wherever convenient. The digital output can be instantaneously displayed or displayed after accumulating many samplings in the totaliser. The totaliser mode provides averaging at the digitiser level and hence the integrator has an infinite holding time. When used in the double boxcar mode the instrument overcomes the problem of any base line instability.
Resumo:
X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.
Resumo:
The determination of the state-of-charge of the lead-acid battery has been examined from the viewpoint of internal impedance. It is shown that the impedance is controlled by charge transfer and to a smaller extent by diffusion processes in the frequency range 15–100 Hz. The equivalent series/parallel capacitance as well as the a.c. phase-shift show a parabolic dependence upon the state-of-charge, with a maximum or minimum at 50% charge. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
The problem of nondestructive determination of the state-of-charge of nickel-cadmium batteries has been examined experimentally as well as theoretically from the viewpoint of internal impedance. It is shown that the modulus of the impedance is mainly controlled by diffusion at all states of charge. Even so, a prediction of the state of charge is possible if the equivalent series/parallel capacitance or the alternating current phase shift is measured at a sufficiently low a.c. test frequency (5–30 Hz) which also avoids inductive effects. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
In the past two decades RNase A has been the focus of diverse investigations in order to understand the nature of substrate binding and to know the mechanism of enzyme action. Although this system is reasonably well characterized from the view point of some of the binding sites, the details of interactions in the second base binding (B2) site is insufficient. Further, the nature of ligand-protein interaction is elucidated generally by studies on RNase A-substrate analog complexes (mainly with the help of X-ray crystallography). Hence, the details of interactions at atomic level arising due to substrates are inferred indirectly. In the present paper, the dinucleotide substrate UpA is fitted into the active site of RNase A Several possible substrate conformations are investigated and the binding modes have been selected based on Contact Criteria. Thus identified RNase A-UpA complexes are energy minimized in coordinate space and are analysed in terms of conformations, energetics and interactions. The best possible ligand conformations for binding to RNase A are identified by experimentally known interactions and by the energetics. Upon binding of UpA to RNase A the changes associated,with protein back bone, Side chains in general and at the binding sites in particular are described. Further, the detailed interactions between UpA and RNase A are characterized in terms of hydrogen bonds and energetics. An extensive study has helped in interpreting the diverse results obtained from a number of experiments and also in evaluating the extent of changes the protein and the substrate undergo in order to maximize their interactions.
Resumo:
It is possible to sample signals at sub-Nyquist rate and still be able to reconstruct them with reasonable accuracy provided they exhibit local Fourier sparsity. Underdetermined systems of equations, which arise out of undersampling, have been solved to yield sparse solutions using compressed sensing algorithms. In this paper, we propose a framework for real time sampling of multiple analog channels with a single A/D converter achieving higher effective sampling rate. Signal reconstruction from noisy measurements on two different synthetic signals has been presented. A scheme of implementing the algorithm in hardware has also been suggested.
Resumo:
Prohibitive test time, nonuniformity of excitation, and signal nonlinearity are major concerns associated with employing dc, sine, and triangular/ramp signals, respectively, while determining static nonlinearity of analog-to-digital converters (ADCs) with high resolution (i.e., ten or more bits). Attempts to overcome these issues have been examined with some degree of success. This paper describes a novel method of estimating the ``true'' static nonlinearity of an ADC using a low-frequency sine signal (for example, less than 10 Hz) by employing the histogram-based approach. It is based on the well-known fact that the variation of a sine signal is ``reasonably linear'' when the angle is small, for example, in the range of +/- 5 degrees to +/- 7 degrees. In the proposed method, the ADC under test has to be ``fed'' with this ``linear'' portion of the sinewave. The presence of any harmonics and offset in input excitation makes this linear part of the sine signal marginally different compared with that of an ideal ramp signal of equal amplitude. However, since it is a sinusoid, this difference can be accurately determined and later compensated from the measured ADC output. Thus, the corrected ADC output will correspond to the true ADC static nonlinearity. The implementation of the proposed method is discussed along with experimental results for two 8-b ADCs and one 10-b ADC which are then compared with the static characteristics estimated by the conventional DC method.
Resumo:
We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring.
Resumo:
The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.
Resumo:
Poly(alpha-methylstyrene peroxide) has been synthesized and characterized spectroscopically. The H-1 and C-13 NMR spectra are shown to reveal the stereochemical features and the endgroups in the peroxide chain. The preliminary studies on the chain dynamics of the polyperoxide chain has been done by measuring the spin-lattice relaxation times (T-1) of the main chain as well as the side chain carbons. It has been shown from the dependence of the spin-lattice relaxation times that the polyperoxide chain is more flexible compared to the corresponding hydrocarbon-backbone analog.
Resumo:
Thin films of Bi2VO5.5 (BVO), a vanadium analog of the n = I member of the Aurivillius family, have been prepared by pulsed laser deposition. The BVO films grow along the [001] direction on LaNiO3(LNO) and YBa2Cu3O7 (YBCO) electrode buffer layers on LaA- IO3(LAO) substrates as obtained from X-ray diffraction studies. The microstructure of the films and of the interfaces within the film and between the film and the substrate were characterized using transmission electron microscopy. The in-plane epitaxial relationship of the rhombohedral LNO on perovskite LAO was [100] LNO // [100] LAO and [001] LNO // [001] LAO. High resolution lattice images showed a sharp interface between LNO and LAO. However, the LNO film is twinned with a preferred orientation along the growth direction. The BVO layer is single crystalline on both LNO/LAO and YBCO/LAO with the caxis parallel to the growth direction except for a thin layer of about 400 Å at the interface which is polycrystalline.
Resumo:
Rotational spectra of five isotopologues of the title complex, C(6)H(5)CCH center dot center dot center dot H(2)O, C(6)H(5)CCH center dot center dot center dot HOD, C(6)H(5)CCH center dot center dot center dot D(2)O, C(6)H(5)CCH center dot center dot center dot H(2)(18)O and C(6)H(5)CCD center dot center dot center dot H(2)O, were measured and analyzed. The parent isotopologue is an asymmetric top with kappa = -0.73. The complex is effectively planar (ab inertial plane) and both `a' and `b' dipole transitions have been observed but no c dipole transition could be seen. All the transitions of the parent complex are split into two resulting from an internal motion interchanging the two H atoms in H(2)O. This is confirmed by the absence of such doubling for the C(6)H(5)CCH center dot center dot center dot HOD complex and a significant reduction in the splitting for the D(2)O analog. The rotational spectra, unambiguously, reveal a structure in which H(2)O has both O-H center dot center dot center dot pi (pi cloud of acetylene moiety) and C-H center dot center dot center dot O (ortho C-H group of phenylacetylene) interactions. This is in agreement with the structure deduced by IR-UV double resonance studies (Singh et al., J. Phys. Chem. A, 2008, 112, 3360) and also with the global minimum predicted by advanced electronic structure theory calculations (Sedlack et al., J. Phys. Chem. A, 2009, 113, 6620). Atoms in Molecule (AIM) theoretical analysis of the complex reveals the presence of both O-H center dot center dot center dot pi and C-H center dot center dot center dot O hydrogen bonds. More interestingly, based on the electron densities at the bond critical points, this analysis suggests that both these interactions are equally strong. Moreover, the presence of both these interactions leads to significant deviation from linearity of both hydrogen bonds.
Resumo:
The paper presents an adaptive Fourier filtering technique and a relaying scheme based on a combination of a digital band-pass filter along with a three-sample algorithm, for applications in high-speed numerical distance protection. To enhance the performance of above-mentioned technique, a high-speed fault detector has been used. MATLAB based simulation studies show that the adaptive Fourier filtering technique provides fast tripping for near faults and security for farther faults. The digital relaying scheme based on a combination of digital band-pass filter along with three-sample data window algorithm also provides accurate and high-speed detection of faults. The paper also proposes a high performance 16-bit fixed point DSP (Texas Instruments TMS320LF2407A) processor based hardware scheme suitable for implementation of the above techniques. To evaluate the performance of the proposed relaying scheme under steady state and transient conditions, PC based menu driven relay test procedures are developed using National Instruments LabVIEW software. The test signals are generated in real time using LabVIEW compatible analog output modules. The results obtained from the simulation studies as well as hardware implementations are also presented.