997 resultados para processing chain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is concerned with the design and development of a functional framework for maritime mode integration in European automotive supply chain management when considering outbound distribution. Furthermore, it provides a readjustment of traditional concepts and terminology with findings that the role of ro-ro port terminals should be considered as decoupling points, poles and postponement platforms. Case studies examine relevant Western European ro-ro port terminals for cars and respective links to assembly/factories of vehicles localized in the hinterland and concludes that ro-ro port terminals reduce logistical friction and impedance, as well as promote space/time compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofiltration process for the treatment/valorisation of cork processing wastewaters was studied. A DS-5 DK 20/40 (GE Water Technologies) nanofiltration membrane/module was used, having 2.09 m(2) of surface area. Hydraulic permeability was determined with pure water and the result was 5.2 L.h(-1).m(-2).bar(-1). The membrane presents a rejection of 51% and 99% for NaCl and MgSO4 salts, respectively. Two different types of regimes were used in the wastewaters filtration process, total recycling mode and concentration mode. The first filtration regime showed that the most favourable working transmembrane pressure was 7 bar working at 25 degrees C. For the concentration mode experiments it was observed a 30% decline of the permeate fluxes when a volumetric concentration factor of 5 was reached. The permeate COD, BOD5, colour and TOC rejection values remained well above the 90% value, which allows, therefore, the concentration of organic matter (namely the tannin fraction) in the concentrate stream that can be further used by other industries. The permeate characterization showed that it cannot be directly discharged to the environment as it does not fulfil the values of the Portuguese discharge legislation. However, the permeate stream can be recycled to the process (boiling tanks) as it presents no colour and low TOC (< 60 ppm) or if wastewater discharge is envisaged we have observed that the permeate biodegradability is higher than 0.5, which renders conventional wastewater treatments feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cork processing wastewater is an aqueous complex mixture of organic compounds that have been extracted from cork planks during the boiling process. These compounds, such as polysaccharides and polyphenols, have different biodegradability rates, which depend not only on the natureof the compound but also on the size of the compound. The aim of this study is to determine the biochemical oxygen demands (BOD) and biodegradationrate constants (k) for different cork wastewater fractions with different organic matter characteristics. These wastewater fractions were obtained using membrane separation processes, namely nanofiltration (NF) and ultrafiltration (UF). The nanofiltration and ultrafiltration membranes molecular weight cut-offs (MWCO) ranged from 0.125 to 91 kDa. The results obtained showed that the biodegradation rate constant for the cork processing wastewater was around 0.3 d(-1) and the k values for the permeates varied between 0.27-0.72 d(-1), being the lower values observed for permeates generated by the membranes with higher MWCO and the higher values observed for the permeates generated by the membranes with lower MWCO. These higher k values indicate that the biodegradable organic matter that is permeated by the membranes with tighter MWCO is more readily biodegradated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous SiC tandem heterostructures are used to filter a specific band, in the visible range. Experimental and simulated results are compared to validate the use of SiC multilayered structures in applications where gain compensation is needed or to attenuate unwanted wavelengths. Spectral response data acquired under different frequencies, optical wavelength control and side irradiations are analyzed. Transfer function characteristics are discussed. Color pulsed communication channels are transmitted together and the output signal analyzed under different background conditions. Results show that under controlled wavelength backgrounds, the device sensitivity is enhanced in a precise wavelength range and quenched in the others, tuning or suppressing a specific band. Depending on the background wavelength and irradiation side, the device acts either as a long-, a short-, or a band-rejection pass filter. An optoelectronic model supports the experimental results and gives insight on the physics of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless local-area networks (WLANs) have been deployed as office and home communications infrastructures worldwide. The diversification of the standards, such as IEEE 802.11 series demands the design of RF front-ends. Low power consumption is one of the most important design concerns in the application of those technologies. To maintain competitive hardware costs, CMOS has been used since it is the best solution for low cost and high integration processing, allowing analog circuits to be mixed with digital ones. In the receiver chain, the low noise amplifier (LNA) is one of the most critical blocks in a transceiver design. The sensitivity is mainly determined by the LNA noise figure and gain. It interfaces with the pre-select filter and the mixer. Furthermore, since it is the first gain stage, care must be taken to provide accurate input match, low-noise figure, good linearity and a sufficient gain over a wide band of operation. Several CMOS LNAs have been reported during the last decade, showing that the most research has been done at 802.11/b and GSM standards (900-2400MHz spectrum) and more recently at 802.11/a (5GHz band). One of the more significant disadvantages of 802.11/b is that the frequency band is crowded and subject to interference from other technologies, as is 2.4GHz cordless phones and Bluetooth. As the demand for radio-frequency integrated circuits, operating at higher frequency bands, increases, the IEEE 802.11/a standard becomes a very attractive option to wireless communication system developers. This paper presents the design and implementation of a low power, low noise amplifier aimed at IEEE 802.11a for WLAN applications. It was designed to be integrated with an active balun and mixer, representing the first step toward a fully integrated monolithic WLAN receiver. All the required circuits are integrated at the same die and are powered by 1.8V supply source. Preliminary experimental results (S-parameters) are shown and promise excellent results. The LNA circuit design details are illustrated in Section 2. Spectre simulation results focused at gain, noise figure (NF) and input/output matching are presented in Section 3. Finally, conclusions and comparison with other recently reported LNAs are made in Section 4, followed by future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 9.9 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains four open reading frames (ORFs) longer than 100 amino acids. One gene, PFK1, has already been cloned and sequenced and the other one is the probable yeast gene coding for the beta-subunit of the succinyl-CoA synthetase. The two remaining ORFs share homology with the deduced amino acid sequence (and their physical arrangement is similar to that) of the YHR161c and YHR162w ORFs from chromosome VIII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 17.6 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains twelve open reading frames (ORFs) longer than 100 amino acids. Three genes had already been cloned and sequenced: CCT, ADE3 and TR-I. Two ORFs are similar to other yeast genes: G7722 with the YAL023 (PMT2) and PMT1 genes, encoding two integral membrane proteins, and G7727 with the first half of the genes encoding elongation factors 1gamma, TEF3 and TEF4. Two other ORFs, G7742 and G7744, are most probably yeast orthologues of the human and Paracoccus denitrificans electron-transferring flavoproteins (beta chain) and of the Escherichia coli phosphoserine phosphohydrolase. The five remaining identified ORFs do not show detectable homology with other protein sequences deposited in data banks. The sequence has been deposited in the EMBL data library under Accession Number Z49133.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Ciências Económicas e Empresariais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic waste is a rich substrate for microbial growth, and because of that, workers from waste industry are at higher risk of exposure to bioaerosols. This study aimed to assess fungal contamination in two plants handling solid waste management. Air samples from the two plants were collected through an impaction method. Surface samples were also collected by swabbing surfaces of the same indoor sites. All collected samples were incubated at 27◦C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. Air samples were also subjected to molecular methods by real-time polymerase chain reaction (RT PCR) using an impinger method to measure DNA of Aspergillus flavus complex and Stachybotrys chartarum. Assessment of particulate matter (PM) was also conducted with portable direct-reading equipment. Particles concentration measurement was performed at five different sizes (PM0.5; PM1; PM2.5; PM5; PM10). With respect to the waste sorting plant, three species more frequently isolated in air and surfaces were A. niger (73.9%; 66.1%), A. fumigatus (16%; 13.8%), and A. flavus (8.7%; 14.2%). In the incineration plant, the most prevalent species detected in air samples were Penicillium sp. (62.9%), A. fumigatus (18%), and A. flavus (6%), while the most frequently isolated in surface samples were Penicillium sp. (57.5%), A. fumigatus (22.3%) and A. niger (12.8%). Stachybotrys chartarum and other toxinogenic strains from A. flavus complex were not detected. The most common PM sizes obtained were the PM10 and PM5 (inhalable fraction). Since waste is the main internal fungal source in the analyzed settings, preventive and protective measures need to be maintained to avoid worker exposure to fungi and their metabolites.