858 resultados para optimization-based similarity reasoning
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
Exercise intensity is a key parameter for exercise prescription but the optimal range for individuals with high cardiorespiratory fitness is unknown. The aims of this study were (1) to determine optimal heart rate ranges for men with high cardiorespiratory fitness based on percentages of maximal oxygen consumption (%VO(2max)) and reserve oxygen consumption (%VO(2reserve)) corresponding to the ventilatory threshold and respiratory compensation point, and ( 2) to verify the effect of advancing age on the exercise intensities. Maximal cardiorespiratory testing was performed on 210 trained men. Linear regression equations were calculated using paired data points between percentage of maximal heart rate (%HR(max)) and %VO(2max) and between percentage of heart rate reserve (%HRR) and %VO(2reserve) attained at each minute during the test. Values of %VO(2max) and %VO(2reserve) at the ventilatory threshold and respiratory compensation point were used to calculate the corresponding values of %HRmax and %HRR, respectively. The ranges of exercise intensity in relation to the ventilatory threshold and respiratory compensation point were achieved at 78-93% of HR(max) and 70-93% of HRR, respectively. Although absolute heart rate decreased with advancing age, there were no age-related differences in %HR(max) and %HRR at the ventilatory thresholds. Thus, in men with high cardiorespiratory fitness, the ranges of exercise intensity based on %HR(max) and %HRR regarding ventilatory threshold were 78-93% and 70-93% respectively, and were not influenced by advancing age.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
An efficient expert system for the power transformer condition assessment is presented in this paper. Through the application of Duval`s triangle and the method of the gas ratios a first assessment of the transformer condition is obtained in the form of a dissolved gas analysis (DGA) diagnosis according IEC 60599. As a second step, a knowledge mining procedure is performed, by conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS), in order to initially evaluate the condition of the equipment taking only the results of dissolved gas analysis into account. The output of this first T2-FLS is used as the input of a second T2-FLS, which additionally weighs up the condition of the paper-oil system. The output of this last T2-FLS is given in terms of words easily understandable by the maintenance personnel. The proposed assessing methodology has been validated for several cases of transformers in service. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.
Resumo:
Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.