978 resultados para deposition temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of growth temperature on the bimodal size distribution of InAs quantum dots on vicinal GaAs(100) substrates grown by metal organic chemical vapor deposition are studied. An abnormal trend of the bimodal size evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then exhibits a sudden decrease at 535 degrees C. The trend is explained by taking into account the presence of multiatomic steps on the substrates. Photoluminescence (PL) studies show that quantum dots on vicinal substrates have a narrower PL linewidth, a longer emission wavelength, and a larger PL intensity than those of the dots with exact substrates. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain evolution of the GaN layer grown on a high-temperature AlN interlayer with GaN template by metal organic chemical vapor deposition is investigated. It is found that the layer is initially under compressive strain and then gradually relaxes and transforms to under tensile strain with increasing film thickness. The result of the in situ stress analysis is confirmed by x-ray diffraction measurements. Transmission electron microscopy analysis shows that the inclination of edge and mixed threading dislocations rather than the reduction of dislocation density mainly accounts for such a strain evolution. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystalline ternary ZnxCd1-xS nanocombs, which have 'comb' shaped' teeth on one side, have been synthesized by a one-step metallo-organic chemical vapor deposition process at a low temperature of 420 degrees C. The asymmetric, growth behavior of the nanocombs is likely to be induced by the polarization of the c-ptane. Because of the uniform structure and perfect geometrical shape, the nanoteeth could be potentially useful as nanocantilever arrays for nanosensors and, nanotweezers. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mosaic structure in InN layers grown by metalorganic chemical vapor deposition at various temperatures has been investigated by X-ray diffraction (XRD). With a combination of Williamson-Hall measurement and fitting of twist angles, it was found that variation of growth temperature from 450 to 550 degrees C leads to the variation of the lateral coherence length, vertical coherence length, tilt and twist of mosaic blocks in InN films in a, respectively, monotonic way. In particular, mosaic tilt increases whereas mosaic twist decreases with elevating temperature. Atomic force microscopy shows the morphological difference of the InN nucleation layers grown at 450 and 550 degrees C. Different coalescence thickness and temperature-dependent in-plane rotation of InN nuclei are considered to account for the XRD results. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality InAsxSb1-x (0 < x <= 0.3) films are grown on GaAs substrates by liquid phase epitaxy and electrical and optical properties of the films are investigated, revealing that the films exhibit Hall mobilities higher than 2x10(4) cm(2) V-1 s(-1) and cutoff wavelengths longer than 10 mu m at room temperature (RT). Photoconductors are fabricated from the films, and notable photoresponses beyond 8 mu m are observed at RT. In particular, for an InAs0.3Sb0.7 film, a photoresponse of up to 13 mu m with a maximum responsivity of 0.26 V/W is obtained at RT. Hence, the InAsxSb1-x films demonstrate attractive properties suitable for room-temperature, long-wavelength infrared detectors. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Al composition of metalorganic chemical vapor deposition (MOCVD)-grown AlGaN alloy layers is found to be greatly influenced by the parasitic reaction between ammonia (NH3) and trimethylaluminum (TMAI). The growth process of AlN is carefully investigated by monitoring the in situ optical reflection. The abnormal dependencies of growth rate on growth temperature, reactor pressure, and flux of NH3 are observed and can be well explained by the effect of parasitic reaction. The increase of growth rate with increasing flux of TMAI is found to depend on the growth temperature and reactor pressure due to the presence of parasitic effect. A relatively low growth temperature and a reduced reactor pressure are suggested for the effective decrease of parasitic reaction during the MOCVD growth of AlN and probably lead to a more effective incorporation of Al into the AlGaN layers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MnSb/porous silicon hybrid structure was prepared by physical vapor deposition technique. The structure and surface morphology of the MnSb films were analyzed by X-ray diffraction and scanning electron microscope, respectively. The magnetic hysteresis loops were obtained by an alternative gradient magnetometer. Based on the measurements, only MnSb phase was found and the surface morphology was rough and island-like. MnSb thin films show ferromagnetism at room temperature. (C) 2003 Elsevier B.V. All rights reserved.