949 resultados para analytical approaches
Resumo:
As the service-oriented architecture paradigm has become ever more popular, different standardization efforts have been proposed by various consortia to enable interaction among heterongeneous environments through this paradigm. This chapter will overview the most prevalent of these SOA approaches. It will first show how technical services can be described, how they can interact with each other and be discovered by users. Next, the chapter will present different standards to facilitate service composition and to design service-oriented environments in light of a universal understanding of service orientation. The chapter will conclude with a summary and a discussion on the limitations of the reviewed standards along their ability to describe service properties. This paves the way to the next chapters where the USDL standard will be presented, which aims to lift such limitations.
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
Odometry is an important input to robot navigation systems, and we are interested in the performance of vision-only techniques. In this paper we experimentally evaluate and compare the performance of wheel odometry, monocular feature-based visual odometry, monocular patch-based visual odometry, and a technique that fuses wheel odometry and visual odometry, on a mobile robot operating in a typical indoor environment.
Resumo:
Sexual harassment in the workplace is a persistent and pervasive problem in Australia and elsewhere, demanding new and creative responses.1 One significant area that may inform prevention and response strategies is the area of ‘bystander approaches’. In examining the potential for bystander approaches to prevent and respond to workplace sexual harassment, this paper draws upon a range of theoretical and empirical research.
Resumo:
Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.
Resumo:
This paper arises from our concern for the level of teaching of engineering drawing at tertiary institutions in Australia. Little attention is paid to teaching hand drawing and tolerancing. Teaching of engineering drawing is usually limited to computer-aided design (CAD) using AutoCAD or one of the solid-modelling packages. As a result, many engineering graduates have diffi culties in understanding how views are produced in different projection angles, are unable to produce engineering drawings of professional quality, or read engineering drawings, and unable to select fits and limits or surface roughness. In the Faculty of Built Environment and Engineering at the Queensland University of Technology new approaches to teaching engineering drawing have been introduced. In this paper the results of these innovative approaches are examined through surveys and other research methods.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
Micro and small businesses contribute the majority of business activity in most developed economies. They are typically embedded in local communities and therefore well placed to influence community wellbeing. While there has been considerable theoretical and empirical analysis of corporate citizenship and corporate social responsibility (CSR), the nature of micro-business community responsibility (mBCR) remains relatively under-explored. This article presents findings from an exploratory study of mBCR that examined the approaches, motivations and barriers of this phenomenon. Analysis of data from 36 semi structured interviews with micro-business owner-operators in the Australian city of Brisbane revealed three mBCR approaches, suggesting an observable mBCR typology. Each mBCR type was at least partly driven by enlightened self interest (ESI). In addition to a pure ESI approach, findings revealed ESI combined with philanthropic approaches and ESI combined with social entrepreneurial approaches. The combination of doing business and doing good found amongst participants in this study suggests that many micro-business owner-operators are supporters of their local communities, and therefore driven by more than profit. This study provides a fine-grained understanding of micro-business involvement in community wellbeing through a lens of responsible business behaviour.
Resumo:
Book Abstract: Current experimentations with approaches to restorative justice for adult offenders represents a compelling new direction in the criminal justice system. This book examines the values and challenges of restorative justice for adult offenders, victims and communities. The discussion is situated within current debate, available research, and the international literature. In canvassing the structure, content, and delivery of key Australian and New Zealand restorative justice programs for adult offenders, the distinguished authors offer critical analysis of the emergence and impact of program developements for practitioners and professionals. This collection brings together stimulating and informed articles by experienced practitioners, leading academics and new researchers in the field. It also offers valuable insights into emerging restorative justice practice for adult offenders and provides a real alternative to the adversarial justice system.
Resumo:
Reflection is not a new concept in the teaching of higher education and is often an important component of many disciplinary courses. Despite this, past research shows that whilst there are examples of rich reflective strategies used in some areas of higher education, most approaches to and conceptualisations of reflective learning and assessment have been perfunctory and inconsistent. In many disciplinary areas reflection is often assessed as a written activity ‘tagged onto’ assessment practices. In creative disciplines however, reflective practice is an integral and cumulative form of learning and is often expressed in ways other than in the written form. This paper will present three case studies of reflective practice in the area of Creative Industries in higher education – Dance, Fashion and Music. It will discuss the ways in which higher education teachers and students use multi-modal approaches to expressing knowledge and reflective practice in context. The paper will argue that unless students are encouraged to participate in deep reflective disciplinary discourse via multi-modes then reflection will remain superficial in the higher education context.
Resumo:
Today, a large number of wind generator interconnection requests have been queued and are being processed. The generator interconnection group study is a way to reduce the generator interconnection cycle time and increase interconnection certainty. However, it is very challenging to identify the “best” transmission upgrades for a large group of generator interconnections. It is also very important to differentiate the constraints caused by each generator interconnection request and identify their responsibilities for transmission upgrades. This paper outlines some innovative study approaches that can be used in a group study with large numbers of generator interconnection requests in a constrained area. Improved study methods are introduced, and a summary and conclusions are derived from the study.
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.