Analytical and numerical solutions of the space and time fractional bloch-torrey equation


Autoria(s): Yu, Qiang; Liu, Fawang; Turner, Ian; Burrage, Kevin
Contribuinte(s)

Jalili, Nader

Data(s)

2011

Resumo

Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.

Identificador

http://eprints.qut.edu.au/52821/

Publicador

Elsevier

Relação

DOI:10.1115/DETC2011-47613

Yu, Qiang, Liu, Fawang, Turner, Ian, & Burrage, Kevin (2011) Analytical and numerical solutions of the space and time fractional bloch-torrey equation. In Jalili, Nader (Ed.) Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Elsevier, Chicago, Illinois, pp. 1-10.

Direitos

Copyright 2012 ASME

Fonte

School of Mathematical Sciences; Science & Engineering Faculty

Palavras-Chave #010000 MATHEMATICAL SCIENCES #Brownian motion #Gaussian probability function
Tipo

Conference Paper