932 resultados para VIRAL-INFECTION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The signaling mechanisms responsible for the induced expression of interferon (IFN) genes by viral infection or double-stranded RNA (dsRNA) are not well understood. Here we investigate the role of the interferon-induced dsRNA-dependent protein kinase PKR in the regulation of IFN induction. Biological activities attributed to PKR include regulating protein synthesis, mediating IFN actions, and functioning as a possible tumor suppressor. Since binding of dsRNA is required for its activation, PKR has been considered as a candidate signal transducer for regulating IFN expression. To examine this role of PKR, loss-of-function phenotypes in stable transformants of promonocytic U-937 cells were achieved by two different strategies, overexpression of an antisense PKR transcript or a dominant negative PKR mutant gene. Both types of PKR-deficient cells were more permissive for viral replication than the control U-937 cells. As the result of PKR loss, they also showed impaired induction of IFN-alpha and IFN-beta genes in response to several inducers--specifically, encephalomyocarditis virus, lipopolysaccharide, and phorbol 12-myristate 13-acetate. Interestingly, while IFN-alpha induction by dsRNA was impaired in PKR-deficient cells, IFN-beta induction remained intact. Loss of PKR function also resulted in decreased antiviral activity as elicited by IFN-alpha and, to a greater extent, by IFN-gamma. These results implicate PKR in the regulation of several antiviral activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the ability of human immunodeficiency virus (HIV)-infected cells to kill uninfected CD4+ lymphocytes. Infected peripheral blood mononuclear cells were cocultured with autologous 51Cr-labeled uninfected cells. Rapid death of the normal CD4-expressing target population was observed following a brief incubation. Death of blood CD4+ lymphocytes occurred before syncytium formation could be detected or productive viral infection established in the normal target cells. Cytolysis could not be induced by free virus, was dependent on gp120-CD4 binding, and occurred in resting, as well as activated, lymphocytes. CD8+ cells were not involved in this phenomenon, since HIV-infected CEMT4 cells (CD4+, CD8- cells) mediated the cytolysis of uninfected targets. Reciprocal isotope-labeling experiments demonstrated that infected CEMT4 cells did not die in parallel with their targets. The uninfected target cells manifested DNA fragmentation, followed by the release of the 51Cr label. Thus, in HIV patients, infected lymphocytes may cause the depletion of the much larger population of uninfected CD4+ cells without actually infecting them, by triggering an apoptotic death.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infection by human immunodeficiency virus type 1 (HIV-1) causes acquired immunodeficiency syndrome (AIDS) after a long clinical latency. This disease is associated with a spectrum of cancers. Here we report that wild-type p53 is a potent suppressor of Tat, a major transactivator of HIV-1. Reciprocally, Tat inhibits the transcription of p53. Downregulation of p53 by upregulated tat may be important for the establishment of productive viral infection in a cell and also may be involved in the development of AIDS-related malignancies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune. Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée. Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale. En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neurodevelopmental hypothesis (NDH) of schizophrenia suggests that a disruption of brain development during early life underlies the later emergence of psychosis during adulthood. The aim of this review is to chart the challenges and subsequent refinements to this hypothesis, with particular reference to the static versus progressive nature of the putative neurobiological processes underlying the NDH. A non-systematic literature review was undertaken, with an emphasis on major review papers relevant to the NDH. Weaknesses in the explanatory power of the NDH have led to a new generation of more refined hypotheses in recent years. In particular, recent versions of the hypothesis have incorporated evidence from structural neuroimaging which suggests changes in brain volumes after the onset of schizophrenia. More detailed models that incorporate progressive neurobiological processes have replaced early versions of the NDH, which were based on a 'static encephalopathy. In addition, recent models have suggested that two or more 'hits' are required over the lifespan rather than only one early-life event. Animal models are providing important insights into the sequelae of disturbed early brain development. The NDH has provided great impetus to the schizophrenia research community. Recent versions of the hypothesis have encouraged more focused and testable hypotheses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endoparasitoid insects introduce maternal factors into the body of their host at oviposition to suppress cellular defences for the protection of the developing parasitoid. We have shown that transient expression of polydnavirus genes from a hymenopteran parasitoid Cotesia rubecula (CrPDV) is responsible for the inactivation of hemocytes from the lepidopteran host Pieris rapae. Since the observed downregulation of CrPDV genes in infected host tissues is not due to cis-regulatory elements at the CrV1 gene locus, we speculated that the termination of CrPDV gene expression may be due to cellular inactivation caused by the CrV1-mediated immune suppression of infected tissues. To test this assumption, we isolated an imaginal disc growth factor (IDGF) that is expressed in fat body and hemocytes, the target of viral infection and expression of CrPDV genes. Time-course experiments showed that the level of P. rapae IDGF is not affected by parasitization and polydnavirus infection. However, the amount of highly expressed genes, such as storage proteins, arylphorin and lipophorin, are significantly reduced following parasitization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficient in vitro expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8(+) cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8(+) T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4(+) T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.